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In this dissertation we study the K ′-theory of a Henselian CM local ring R which

is an isolated singularity and has an n-cluster tilting object M . Our main result

is a description of the homotopy fiber of the canonical map from K ′(EndR(M))

to K ′(R). We also develop a technique for decomposing K ′
1(EndR(M)). As we

demonstrate, these tools can be used to extract surprisingly explicit information

about K ′(R) for certain choices of R.
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1 Introduction

1.1 Motivation

The work in this thesis aims to solve the following problem.

Question 1.1. Let R be the ring of germs of functions in a neighborhood of an

isolated singularity – for example, R = C[[x, y]]/(x2 − y3). What can one say

about the K ′-theory of R?

The original motivation for Question 1.1 was partly geometric. Suppose R is a

hypersurface singularity, i.e. R = S/(f) for some regular local ring S and element

f ∈ S; then the dg category MF(S, f) of matrix factorizations over S with poten-

tial w is a dg enrichment of the singularity category Dsing(R) := Db(R)/Dperf(R),

which is known to reflect many important properties of the singularity of R (see,

e.g., [Orl04], [Orl09]). When S = k[[x1, . . . , xn]], the Hochschild homology of

MF(S, f) has been computed explicitly ([Dyc11, Theorem 5.7]):

HHn(MF(S, f)) =





S/(f, ∂f
∂x1
, . . . , ∂f

∂xn
) if n = dim(R)

0 otherwise

Since K-theory and Hochschild homology are closely related, one would expect

the K-theory of MF(S, f) to be an interesting invariant as well. And since there

is a long exact sequence of K-groups (see 7.8)

· · · // Ki(R) // K ′
i(R) // Ki(MF(S, f)) // Ki−1(R) // · · ·

one could hope to study Ki(MF(S, f)) by studying K ′
i(R). I achieved only partial

success in carrying out this program; Section 7.3 has a sample computation of

K1(MF(S, f)) for a certain class of polynomials f .
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As we shall see, though, Question 1.1 is also interesting in its own right. It is

closely related to subtle questions in higher K-theory, and it bears a surprising

connection to Iyama’s n-Auslander-Reiten theory.

A partial answer to Question 1.1 was given by Auslander and Reiten in 1986.

They prove the following theorem; see [AR86, §2, Prop. 2.2] for the original

statement or [Yos90, 13.7] for the statement in this form.

Theorem 1.2. Let R be a Henselian CM local ring of finite representation type.

Denote by H the free abelian group on the isomorphism classes of indecomposable

maximal Cohen-Macaulay R-modules. Then the map H −→ K ′
0(R) sending [M ]

to [M ] is surjective, and its kernel is the subgroup

〈[N ]−[E]+[M ] | ∃ an Auslander-Reiten sequence 0 −→ N −→ E −→M −→ 0〉.

Thus if one knows the Auslander-Reiten sequences in the category of maximal

Cohen-Macaulay R-modules, the above theorem allows explicit computation of

K ′
0(R). Our main theorem, stated below, is a generalization of Theorem 1.2.

Theorem 1.3. Let (R,m) be a Henselian CM local ring, and assume the category

CM(R) of maximal Cohen-Macaulay R-modules has an n-cluster tilting object L.

Let I be the set of isomorphism classes of indecomposable summands of L, and

let I0 = I \ {[R]}. Then there is a long exact sequence

· · · →
⊕

[M ]∈I0

Ki(κM) → K ′
i(Λ) → K ′

i(R) →
⊕

[M ]∈I0

Ki−1(κM) → · · · (1.4)

where

Λ = EndR(L)
op and κM = (EndRM)op/rad((EndRM)op).

κM is always a division ring and, when R/m is algebraically closed, κM = R/m.

The long exact sequence ends in a presentation
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⊕
[M ]∈I0

K0(κM) // K ′
0(Λ) // K ′

0(R) // 0

Z
I0 Z

I

of K ′
0(R); when L is an additive generator for CM(R), it is exactly the one

described in Theorem 1.2.

The hypothesis that CM(R) has an n-cluster tilting object is much weaker

than the assumption in Theorem 1.2 that R is of finite representation type; in

fact, if R is of finite representation type only if CM(R) has a 1-cluster tilting

object. When R is Gorenstein, CM(R) has a (dim(R) − 1)-cluster tilting object

if and only if R has a noncommutative crepant resolution.

This document is organized as follows. Sections 2, 3, 4, and 6 give the back-

ground we need. Section 2 covers some non-standard facts about additive cate-

gories. Section 3 reviews the basic theory of maximal Cohen-Macaulay modules.

Section 4 reviews the fundamental theorems in higher K-theory, along with an-

other more obscure theorem (which, in my view, should not be obscure). Section

6 summarizes the main results of n-cluster tilting theory.

Sections 5, 7, and 8 present and develop Theorem 1.3. The goal of Section 5 is

to prove Theorem 5.12, which is an important computational tool in later sections

but also independently interesting. Section 7 is the heart of the paper; it is there

that we prove Theorem 1.3. Section 8 discusses noncommutative localization in

K-theory and the difficulty of computing theK-theory of an n-Auslander algebra.

The following diagram depicts the interdependence of the sections. Section x

requires results from section y if and only if there is a path from y to x.

2 // 4 // 5

��

3 // 6 // 7 // 8
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1.2 Notation and Conventions

For a ring R, mod(R) denotes the category of finitely presented left R-modules,

proj(R) denotes the category of finitely generated projective left R-modules, fl(R)

denotes the category of finite length left R-modules, and rad(R) denotes the

Jacobson radical of R. If L is an object of the additive category A, add(L)

denotes the full subcategory of A consisting of direct summands of finite di-

rect sums of L. Chb(A) denotes the category of bounded complexes in A, and

Chb(R) := Chb(mod(R)). Since the K-theory functor will appear frequently, we

avoid the standard notation Kb(A) to denote the category of complexes in A up

to homotopy; instead we denote this by Hob(A).

All categories that will arise happen to be additive, and all functors between

them are assumed to be additive. All modules over a ring are left modules. All

spectra are viewed as objects in the stable homotopy category Ho(Sp), and maps

between spectra are viewed as morphisms in this category. This is useful because

Ho(Sp) is a triangulated category, and the stable homotopy functor Ho(Sp) →

(abelian groups) is a homological functor.

2 Additive Categories

2.1 Coherent Additive Categories

Definition 2.1. Let A be an additive category. A (left) A-module is an additive

functor Aop → (abelian groups). Let Mod(A) be the category whose objects are

A-modules and whose morphisms are natural transformations. Mod(A) is an

abelian category in which kernels and cokernels are computed objectwise. Call
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F ∈ Mod(A) finitely presented if there is an exact sequence in Mod(A)

A(−,M)
A(−,f)

// A(−,M ′) // F // 0

for some f : M → M ′ in A. Denote by mod(A) the full subcategory of Mod(A)

consisting of finitely presented functors.

Definition 2.2. Given f : M ′ → M in A, a pseudokernel of f is a map g :

M ′′ →M ′ such that

A(−,M ′′)
A(−,g)

// A(−,M ′)
(A)(−,f)

// A(−,M)

is exact in Mod(A). Note that if g is a pseudokernel of f , then g is a kernel of f

if and only if A(−, g) is a monomorphism.

Following [AR86], we call A coherent if every map in A has a pseudokernel.

Remark 2.3. The definition of coherent above generalizes the classical notion

of “coherent” for rings. A ring is usually called left coherent if every finitely

generated left ideal is finitely presented. A ring R is left coherent if and only if

proj(R) is coherent.

Proposition 2.4 ([Aus66]). mod(A) is an abelian category if and only if A has

pseudokernels.

Definition 2.5. Let B be a full subcategory of A and M an object of A. A

right B-approximation of M is a map f : N → M in A with N ∈ B such that

B(−, N)
A(−,f)

// A(−,M) |B // 0 is exact in Mod(B). B is called contravariantly

finite in A if every object of A has a right B-approximation. Define left B-

approximation and covariantly finite in A dually. B is said to be functorially

finite in A if it is both covariantly and contravariantly finite in A.

Remark 2.6. One sees easily that B ⊂ A is contravariantly finite if and only if

for any finitely generated A-module F , F |B is a finitely generated B-module.
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Proposition 2.7. Suppose A is coherent and B ⊂ A is a contravariantly finite

subcategory. Then B is coherent.

Proof. Let f :M → N be a morphism in B, and let i : L→M be a pseudokernel

of f in A. Let b : K → L be a right B-approximation of L. Then ib is a

pseudokernel of f in B.

Remark 2.8. Using Auslander-Buchweitz Theory, we will see in Theorem 3.41

that when R is a Cohen-Macaulay local ring with canonical module, the cate-

gory CM(R) of maximal Cohen-Macaulay R-modules is a contravariantly finite

subcategory of the coherent additive category mod(R).

2.2 Krull-Schmidt Additive Categories

Definition 2.9. Let A be an additive category. An object M of A is called

indecomposable if it is not a direct sum of proper submodules. A is called Krull-

Schmidt if every object of A can be decomposed as a finite direct sum of objects

with local endomorphism rings.

Note that an object with local endomorphism ring is automatically indecom-

posable, since a local ring cannot have nontrivial idempotents.

Proposition 2.10. Let A be an additive category in which the endomorphism

ring of every indecomposable object is local. Suppose M1 ⊕ · · · ⊕ Mm
∼= N1 ⊕

· · · ⊕Nn with Mi, Nj indecomposable in A for all i, j, then m = n and, for some

permutation σ of {1, . . . ,m}, Mi
∼= Nσ(i) for all i.

Consequently, any object in a Krull-Schmidt category has a unique decompo-

sition into indecomposables.

Definitions 2.11.
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1. A commutative local ring (R,m) is called Henselian if for any monic poly-

nomial f ∈ R[t], any factorization of f in (R/m)[t] lifts to a factorization

of f in R[t].

2. A ring Λ is called semiperfect if it has a complete orthogonal set of idem-

potents e1, . . . , en such that eiRei is a local ring.

Among commutative local rings, the Henselian ones are those whose module

categories are Krull-Schmidt; among all rings, the semiperfect ones are those

whose projective module categories are Krull-Schmidt. The next two theorems

state these assertions precisely.

Krull-Schmidt Theorem 2.12. [[Eva73, Theorem 1], [Bon02, Theorem 1.4]]

A commutative local ring R is Henselian if and only if every module-finite R-

algebra which has no nontrivial idempotents is local. In particular, if R is a

Henselian local ring, EndR(M) is local for any indecomposable M ∈ mod(R), so

mod(R) is Krull-Schmidt.

Theorem 2.13. The following conditions on a ring Λ are equivalent.

1. proj(Λ) is Krull-Schmidt.

2. proj(Λop) is Krull-Schmidt.

3. Λ/rad(Λ) is semisimple and any idempotent in Λ/rad(Λ) is the image of

an idempotent in Λ.

4. Any simple Λ-module has a projective cover.

Definition 2.14. The radical of the additive category A is the two-sided ideal

radA ⊂ A defined by

radA(X, Y ) = {f ∈ HomA(X, Y )|fg ∈ rad(EndAY ) for all g ∈ HomA(Y,X)}

7



Proposition 2.15.

1. radA(X,X) is the Jacobson radical rad(EndA(X)) of EndA(X).

2. If X =
⊕

Xi, Y =
⊕

Yj, then radA(X, Y ) =
⊕
i,j

radA(Xi, Yj).

3. If A is Krull-Schmidt and X and Y are nonisomorphic indecomposables,

radA(X, Y ) = HomA(X, Y ).

From these properties one can see that if A is Krull-Schmidt, radA(X, Y )

consists of those maps f : X → Y which do not induce an isomorphism between

any indecomposable summands of X and Y .

Let A be a Krull-Schmidt additive category. We next classify the simple ob-

jects of Mod(A). For each indecomposable objectM of A, let RM = EndR(M)op.

Let κM be the quotient of RM by its Jacobson radical. RM is local, so κM is a

division ring.

Since EndRM is a local ring, the functor A(−,M) ∈ mod(A) has a unique

maximal subfunctor FM , which coincides with radA(−,M). For any indecompos-

able N 6∼= M , FM(N) = A(N,M), and FM(M) = rad(EndRM).

Let SM = A(−,M)/FM . As an additive functor, SM is determined uniquely

up to isomorphism by the following properties.

1. SM(N) = 0 if N is indecomposable and not isomorphic to M .

2. SM(M) = κopM .

3. For f :M −→M , SM(f)(α) = α · f , where f is the image of f in κopM .

Proposition 2.16. Let S be a functor in Mod(A). Then the following are equiv-

alent:
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1. S is simple in Mod(A).

2. S ∼= SM for some indecomposable M ∈ Mod(A).

Proof. 2 ⇒ 1 is clear, since FM ⊂ A(−,M) is a maximal subfunctor. We prove

1 ⇒ 2. Suppose S is a simple object in Mod(A). S cannot vanish on all inde-

composables, so let M be an indecomposable in A such that S(M) 6= 0. Choose

nonzero x ∈ S(M). x defines a nonzero morphism x∗ : A(−,M) −→ S by

(x∗)N(f) = S(f)(x) for f : N −→ M in A. As S is simple, x∗ must be an

epimorphism, and its kernel is a maximal subfunctor of A(−,M). Therefore

S ∼= A(−,M)/FM = SM .

3 CM Modules

3.1 Definitions

In this section R denotes a noetherian local ring of Krull dimension d with max-

imal ideal m.

Definition 3.1. LetM be a finitely generated R-module. An n-tuple (x1, . . . , xn)

of elements of m is called an M-sequence of length n if xi+1 is a nonzerodivisor

on M/(x1, . . . , xi)M for 1 ≤ i < n. The depth of a finitely generated R-module

M is the maximal length of an M -sequence.

Lemma 3.2. For nonzero M ∈ mod(R), the following are equivalent:

1. There is an M-sequence of length n.

2. ExtiR(R/m,M) = 0 for i < n.

Proof. (1 ⇒ 2) Let (x1, . . . , xn) be an M -sequence. By induction we may assume

ExtiR(R/m,M/x1M) = 0 for i < n − 1 (if n = 1, this condition is of course

9



vacuous). Then the short exact sequence

0 //M
x1 //M //M/x1M // 0

induces an exact sequence

· · · // Exti−1
R (R/m,M/x1M) // ExtiR(R/m,M)

x1 // ExtiR(R/m,M) // · · ·

As x1 annihilates ExtiR(R/m,M), we conclude by the inductive hypothesis that

ExtiR(R/m,M) = 0 for i < n.

(2 ⇒ 1) We first prove the following statement: if HomR(R/m,M) = 0 then

there is r ∈ m which is a nonzerodivisor on M . Suppose not; then every element

of m is a zero divisor on M , so contained in an associated prime of M . By prime

avoidance, m must be contained in an associated prime of M , so m = ann(x) for

some x ∈ m. But x induces a nonzero map R/m →M , r 7→ rx, which contradicts

the assumption HomR(R/m,M) = 0. The proof now proceeds by induction on

n. The case n = 1 is exactly the statement we just proved. Let n > 1, and

assume that ExtiR(R/m,M) = 0 for i < n; we must show there is an M -sequence

of length n. Since HomR(R/m,M) = 0, there is r ∈ m which is a nonzerodivisor

on M . The exact sequence

0 //M r //M //M/rM // 0

induces a long exact sequence

· · · // ExtiR(R/m,M) // ExtiR(R/m,M/rM) // Exti+1
R (R/m,M) // · · ·

from which we conclude ExtiR(R/m,M/rM) = 0 for i < n − 1. By Nakayama’s

Lemma M/rM 6= 0, so by induction we may assume there is an M/rM -sequence

(x1, . . . , xn−1) of length n − 1. (r, x1, . . . , xn−1) is then an M -sequence of length

n.

10



Corollary 3.3. For M ∈ mod(R),

depth(M) = min {i | ExtiR(R/m,M) 6= 0}.

Since depth(M) ≤ d (see e.g. [Mat89, Theorem 17.2]), we obtain the follow-

ing.

Corollary 3.4. Let M be a finitely generated R-module. The following are equiv-

alent.

1. ExtiR(R/m,M) = 0 for i < d.

2. depth(M) = d.

Definition 3.5. A finitely generated R-module M is called maximal Cohen-

Macaulay if it satisfies the equivalent conditions of Corollary 3.4. We denote by

CM(R) the full subcategory ofmod(R) consisting of the maximal Cohen-Macaulay

modules. R is called Cohen-Macaulay or CM if it is maximal Cohen-Macaulay

as a module over itself.

Remark 3.6. Suppose R is Cohen-Macaulay. Since R is local, projective R-

modules are free; since R is Cohen-Macaulay, free R-modules are maximal Cohen-

Macaulay. It is well-known that any maximal Cohen-Macaulay module M is

reflexive, i.e. the natural map M → HomR(HomR(M,R), R) is an isomorphism.

Let ref(R) ⊂ mod(R) be the subcategory consisting of reflexive modules. The

previous sentences may be summarized as

proj(R) ⊂ CM(R) ⊂ ref(R).

When R is regular local, the Auslander-Buchsbaum formula

proj. dim(M) + depth(M) = d

11



holds for any finitely generated R-module M , so in this case CM(R) = proj(R).

We will sometimes be motivated by the idea that the difference between CM(R)

and proj(R) should somehow measure the failure of R to be regular local.

Definition 3.7. Motivated by the previous remark, for a CM local ring R we

define

CM(R) := CM(R)/proj(R)

Explicitly, CM(R) has the same objects as CM(R), and CM(R)(M,N) is the quo-

tient of HomR(M,N) by the subgroup of morphisms factoring through a finitely

generated projective R-module. We often denote CM(R)(M,N) by HomR(M,N).

Remark 3.8. When R is Gorenstein, CM(R) is a Frobenius category ([Buc87,

4.8]). We do not discuss Frobenius categories until 4.3, but we note now that

by the general theory of Frobenius categories, CM(R) is a triangulated category

when R is Gorenstein, and the shift functor in CM(R) is the syzygy functor.

The following lemma is straightforward to prove.

Lemma 3.9. Suppose

0 //M ′ //M //M ′′ // 0

is a short exact sequence of R-modules.

1. If M ′ and M ′′ are in CM(R), then so is M .

2. If M and M ′′ are in CM(R), then so is M ′.

Since CM(R) is closed under summands in mod(R), Theorem 2.12 implies

CM(R) is Krull-Schmidt when R is Henselian.

12



3.2 Isolated Singularities and Auslander-Reiten Theory

In this section, assume R is a Henselian local CM ring of dimension d with

canonical module ω.

Definition 3.10. We say M ∈ mod(R) is locally free on the punctured spectrum

if Mp is a free Rp-module for any nonmaximal prime p. R is called an isolated

singularity if Rp is a regular local ring for every nonmaximal prime p.

Lemma 3.11. [Yos90, Lemma 3.3] The following are equivalent.

1. R is an isolated singularity.

2. For any M,N ∈ CM(R), Ext1R(M,N) is a finite length R-module.

3. Any M ∈ CM(R) is locally free on the punctured spectrum.

Definition 3.12. A map f : E → M in CM(R) is called right almost split if

im(CM(R)(−, f)) = radCM(R)(−,M). IfM is indecomposable and not isomorphic

to R, this is equivalent to saying that

(−, E)
(−,f)

// (−,M) // (−,M)/(rad(−,M)) // 0

is exact in Mod(CM(R)). f is called minimal right almost split if f is right almost

split and, for any g ∈ EndRE such that fg = f , g is an automorphism. A short

exact sequence

0 // N
g

// E
f

//M // 0 (3.13)

is called a (1-)Auslander-Reiten sequence (or just AR sequence) ending in M if

f is minimal right almost split.

(3.13) is an AR sequence if and only if

0 // (−, N)
(−,g)

// (−, E)
(−,f)

// (−,M)

13



is a minimal projective resolution of (−,M)/rad(−,M) in Mod(CM(R)). There-

fore an AR sequence is determined, up to isomorphism, by its last term.

Remark 3.14. We shall see in Proposition 3.20 that when R is an isolated

singularity, any nonfree indecomposable M ∈ CM(R) is the last term of an AR

sequence.

Definition 3.15. Let (−)∗ = Hom(−, R) : CM(R)op → CM(R). For M ∈

CM(R), define the functor Tr : CM(R)op → CM(R), called the Auslander trans-

pose, as follows. Given a maximal Cohen-Macaulay module M , choose a presen-

tation

P1
d // P0

//M // 0

of M by finitely generated projective modules; then set TrM = coker(d∗). In

other words, TrM fits into and exact sequence

P ∗
0

d∗ // P ∗
1

// TrM // 0.

Tr is defined in the obvious way on morphisms, and is determined up to canonical

natural isomorphism by the choices of projective presentations.

Definition 3.16. Let Ω : CM(R) → CM(R) be the syzygy functor, so ΩM fits

into an exact sequence

0 // ΩM // P //M // 0

with P ∈ proj(R). Set τ(M) = Hom(ΩdTrM,ω). τ defines a functor from CM(R)

to CM(R) := CM(R)/add(ω).

Theorem 3.17 (Auslander-Reiten Duality). Let E(R/m) be an injective envelope

of R/m, and let D(−) = HomR(−, E(R/m)). Suppose M ∈ mod(R) is locally
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free on the punctured spectrum, and suppose N ∈ CM(R). Then there is an

isomorphism, natural in M and N ,

DHomR(M,N) ∼= Ext1R(M, τN) (3.18)

Now, suppose M is indecomposable and locally free on the punctured spec-

trum. HomR(M,M) is a local ring, since it is a quotient of the local ring

EndR(M). Therefore DHomR(M,M) has a one dimensional socle, consisting

of those maps HomR(M,M) → E(R/m) which vanish on the Jacobson radical

rad(HomR(M,M)). Let ξ be a nonzero element of Ext1R(M, τM) whose image

under the isomorphism (3.18) is in the socle. Then ξ defines a short exact se-

quence

ξ : 0 // τM // E //M // 0. (3.19)

Proposition 3.20. For any indecomposable M in CM(R) which is not isomor-

phic to R and locally free on the punctured spectrum, and for any choice of ξ as

above, the associated exact sequence (3.19) is an AR sequence. In particular, if

R is an isolated singularity, then for every non-free indecomposable M ∈ CM(R),

there is an AR sequence ending in M .

Remark 3.21. Recall from 2.16 that the simple objects of Mod(CM(R)) are

the functors SM := (−,M)/rad(−,M) for M ∈ CM(R) indecomposable. One

consequence of Proposition 3.20 is that SM is finitely presented when M is not

isomorphic to R and locally free on the punctured spectrum.
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3.3 Finite CM Type

Definition 3.22. We say a CM local ring R is of finite Cohen-Macaulay type

if there are only finitely many isomorphism classes of indecomposable maximal

Cohen-Macaulay R-modules.

There are remarkable classification theorems for the rings of finite Cohen-

Macaulay type. The classification for hypersurfaces is stated in Theorem 3.24.

Definition 3.23. We say g ∈ k[x, y] is of type ADE if g is one of the following

polynomials.

(An) : x
2 + yn+1 (n ≥ 1)

(Dn) : x
2y + yn−1 (n ≥ 4)

(E6) : x
3 + y4

(E7) : x
3 + xy3

(E8) : x
3 + y5

Theorem 3.24. Let k be an algebraically closed field of characteristic not equal to

2, 3, or 5. Suppose R = k[[x, y, x2, . . . , xd]]/(f), where 0 6= f ∈ (x, y, x22, . . . , x
2
d).

Then R is of finite CM type if and only if R ∼= k[[x, y, x2, . . . , xd]]/(g+x
2
2+. . .+x

2
d)

where g ∈ k[x, y] is of type ADE.

Definition 3.25. We call R an ADE singularity if it is of the form described in

Theorem 3.24.

The method of proof of Theorem 3.24 is a bit surprising. One direction of the

proof – that hypersurfaces of finite CM type are ADE singularities – was proved by

Buchweitz-Greuel-Schreyer in 1987 ([BGS87]). On the other hand, the converse

was proved separately in dimensions one ([GK85]) and two ([Aus86b], [Esn85]),
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using quite different techniques, and then generalized to arbitrary dimensions

using a technique called Knörrer periodicity, which we know describe.

For the next definition and theorem, let (S, n) be a complete regular local

ring and R = S/(f) with 0 6= f ∈ n2. Assume S/n is algebraically closed and its

characteristic is not 2.

Definition 3.26. Set

R# := S/(f + z2).

(R# appears to depend on the choice of S and f , but it turns out to be inde-

pendent of S and f when S/n is algebraically closed of characterstic not equal to

2.)

Let M ∈ CM(R). Viewing M as an R#-module via the projection R# → R,

set

M# := syzR
#

1 (M) ∈ CM(R#).

Theorem 3.27 (Knörrer Periodicity). [[Kno87]] The assignment M 7→ M##

defines a one-to-one correspondence between indecomposable maximal Cohen-Ma-

caulay R-modules and indecomposable maximal Cohen-Macaulay R##-modules.

This correspondence extends to an equivalence between stable categories CM(R) ≃

CM(R##).

Remark 3.28. If the equivalence CM(R) ≃ CM(R##) can be lifted to an exact

functor between exact categories, there should be an isomorphism in K-theory

between matrix factorization categories. Unfortunately, I do not see a way to lift

the functor.

The converse to Theorem 3.24 now follows from the classification in dimen-

sions one and two (i.e., Theorem 3.24 for d = 1 and d = 2) together with Theorem

3.27.
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3.4 Invariant Theory

In this section we discuss a certain class of singularities, the rational singularities,

that is at the same time broad and well-behaved. Rational singularities seem to

be much more common than those of finite CM type, but rational singularities

still have many of the nice properties of finite CM type singularities.

Let k be a field. Suppose a group G acts on a k-algebra A by algebra endo-

morphisms. Denote by AG the invariant subring {s ∈ S | (∀g ∈ G)(g · s = s)} of

A.

Now set S = k[[x1, . . . , xn]] and let G be a finite subgroup of GLn(k) such that

|G| is invertible in k. The natural action of G on the subspace span{x1, . . . , xn} ⊂

S extends uniquely to an action on S by k-algebra endomorphisms commuting

with infinite sums. We call this action the linear action of G on S; it depends

not only on S and G but also on the embedding of G in GLn(k).

Definition 3.29. Define the skew group ring S ∗ G as follows. As an abelian

group, S ∗G is
⊕
g∈G

Sg, a direct sum of copies of S. The multiplication is defined

by (sg)(s′g′) = (s(g · s′))(gg′).

An S ∗ G-module is naturally an S-module via restriction of scalars along

the inclusion S = Se ⊂ S ∗ G. For S ∗ G-modules M,N , HomS(M,N) has a

left G-action (actually, is a left S ∗G-module) via (g · f)(m) = g(f(g−1m)). An

S-linear map between S ∗G-modules commutes with this action if and only if it

is S ∗G-linear; in other words,

(HomS(M,N))G = HomS∗G(M,N).

Since |G| is invertible in k, taking G-invariants (−)G is exact. Let M and N be

S ∗ G-modules and P• an S ∗ G-free resolution of M . Then P• is also an S-free
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resolution of M , so

ExtiS∗G(M,N) = H iHomS∗G(P•, N)

= H i(HomS(P•, N)G)

= H i(HomS(P•, N))G

= (ExtiS(M,N))G.

Therefore if M is S-projective, ExtiS∗G(M,−) ⊂ ExtiS(M,−) = 0, so M is S ∗G-

projective. This proves the following.

Proposition 3.30. S ∗G has global dimension n.

Set R = SG. Note that there is a natural ring homomorphism f : S ∗ G →

EndR(S) defined by f(sg)(s′) = s(g · s′); the multiplication in S ∗ G is defined

precisely so as to make f a ring homomorphism.

Proposition 3.31. R is Cohen-Macaulay, and S is a maximal Cohen-Macaulay

R-module.

Definition 3.32. g ∈ GLn(k) is called a pseudo-reflection if it fixes a codimen-

sion-one subspace of kn.

Theorem 3.33 ([Aus62]). Suppose G contains no nontrivial pseudo-reflections.

Then f is an isomorphism.

It follows that when G contains no nontrivial pseudo-reflections, there is an

equivalence addR(S) → proj(S ∗ G) sending M to HomR(S,M), which is a left

module over EndR(S) = proj(S ∗G).

Definition 3.34. Let n ⊂ S ∗ G be the Jacobson radical of S ∗ G; concretely,

n is the two-sided ideal generated by x1, . . . , xn. Given V ∈ mod(kG) and M ∈
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mod(S), the vector spaceM⊗kV is naturally an S∗G-module, with multiplication

defined by (sg)(m⊗ v) = (sg(m))⊗ (g(v)). Define functors

F : mod(kG) // proj(S ∗G)

V ✤ // S ⊗k V

H : proj(S ∗G) // mod(kG)

P ✤ // P/nP

Proposition 3.35. F and H are inverses on objects; that is, H(F (V )) ∼= V

and F (H(P )) ∼= P . In particular, F and H induce a bijection between the set of

isomorphism classes of irreducible kG-modules and the set of isomorphism classes

of indecomposable S ∗G-modules.

Proof. We have

H(F (V )) = (S ⊗k V )/n(S ⊗k V )

= (S ⊗k V )/(nS ⊗k V )

∼= V.

On the other hand, (S ∗ G)/n is semisimple, so S ∗ G is a semiperfect ring,

and therefore the projection p : P → P/nP and q : S ⊗k P/nP → (S ⊗k

P/nP )/n(S⊗k P/nP ) are projective covers. Since (S⊗k P/nP )/n(S⊗k P/nP ) =

(S⊗kP/nP )/((nS)⊗kP/nP ) ∼= P/nP , the projective covers must be isomorphic.

Remark 3.36. Actually, Proposition 3.35 is just an instance of the following

more general facts about any semiperfect ring Λ:

1. The functor H = (Λ/rad(Λ) ⊗Λ −) : proj(Λ) → mod(Λ/rad(Λ)) induces a

bijection between isomorphism classes of indecomposables. (In fact, H is

the quotient of proj(Λ) by its Jacobson radical radproj(Λ).)
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2. Suppose the quotient Λ → Λ/rad(Λ) has a section f : Λ/rad(Λ) → Λ, and

let f ∗ = (Λ⊗Λ/rad(Λ)−) : mod(Λ/rad(Λ)) → proj(Λ). Then f ∗ and H induce

inverse functions between isomorphism classes of indecomposables.

Theorem 3.37 ([Aus86b]). Suppose k is algebraically closed, G contains no non-

trivial pseudo-reflections, and n = 2. Then addR(S) = CM(R). In particular, R

is of finite Cohen-Macaulay type.

3.5 Auslander-Buchweitz Approximation

Let R be a Cohen-Macaulay local ring with dualizing module ω. The next propo-

sition states that the subcategory of mod(R) consisting of modules of finite injec-

tive dimension is “orthogonal” to the subcategory of maximal Cohen-Macaulay

modules.

Proposition 3.38 ([AB89]). Let M,Z ∈ mod(R).

1. M is MCM if and only if ExtiR(M,Y ) = 0 for all i > 0 and Y ∈ mod(R)

of finite injective dimension.

2. Z is of finite injective dimension if and only if ExtiR(N,Z) = 0 for all i > 0

and N ∈ CM(R).

Definition 3.39. Let p :M → X be a map in mod(R). p is called right minimal

if for any f : M → M satisfying pf = p, f is an isomorphism. p is called an

MCM approximation of X if M is maximal Cohen-Macaulay and ker(p) is of

finite injective dimension. p is called a minimal MCM approximation of X if p is

both right minimal and an MCM approximation of X.

A map i : X → Z is called an FID hull ofX if Z is of finite injective dimension

and coker(i) is maximal Cohen-Macaulay.
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Lemma 3.40. Let p : M → X be an MCM approximation of X. The following

are equivalent:

1. p is right minimal.

2. p has no nonzero summand of the form N → 0.

Theorem 3.41 ([AB89]). Any M ∈ mod(R) has both a minimal MCM approxi-

mation and an FID hull.

The proof we provide here is from [LW12, Theorem 11.17].

Proof. The proof is by induction on codepthM := d− depthM .

If codepthM = 0,M is a minimal MCM approximation of itself. An FID hull

of M can be constructed as follows. Denote by M∨ the Matlis dual HomR(−, ω).

(−)∨ defines an exact functor CM(R) → CM(R) ([Yos90, Corollary 1.13]). Choose

a surjection p : F →M∨, so there is a short exact sequence

0 // ker(p) // F
p

//M∨ // 0.

Since HomR(−, ω) is exact on CM(Λ) and ker(p) ∈ CM(Λ), there is a short exact

sequence

0 // (M∨)∨
p∨

// F∨ // (ker(p))∨ // 0.

F∨ is isomorphic to ω⊕n for n = rank(F ), and (ker(p))∨ ∈ CM(R) because

ker(p) ∈ CM(R). Since M ∼= (M∨)∨, the above sequence gives an FID hull of M .

Now suppose codepth(M) = n > 0. Choose a projective cover p : F → M of

M , so K := ker(p) has codepth n− 1. By induction K has an FID hull

0 // K // Z // N // 0.
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Now let L be the pushout F
∐

K Z, so there is a diagram

0

��

0

��

0 // K //

��

F
p

//

��

M // 0

0 // Z //

��

L //

��

M // 0

N

��

N

��

0 0

with exact rows and columns. L is an extension of two maximal Cohen-Macaulay

modules, so L ∈ CM(R). Therefore the middle row of the diagram is an MCM

approximation of M .

Since L is in CM(R) it has an FID hull

0 // L // Z ′ // N ′ // 0.

Let L′ be the pushout Z ′
∐

LM , so there is a commutative diagram

0

��

0

��

0 // Z // L //

��

M //

��

0

0 // Z // Z ′ //

��

L′ //

��

0

N ′

��

N ′

��

0 0

Since Z and Z ′ have finite injective dimension, so does L′. Therefore the last

column in the diagram is an FID hull of M .
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Proposition 3.42.

1. Let p : M → X be an MCM approximation of X, and suppose h : N → X

is another map with N maximal Cohen-Macaulay. Then h factors through

p.

2. Suppose p :M → X and p′ :M ′ → X are MCM approximations with p right

minimal. Then there is a decomposition M ′ = M ⊕ N for some maximal

Cohen-Macaulay module N such that p′ |M= p and p′ |N= 0. Consequently

a minimal MCM approximation is unique up to isomorphism.

Proof.

1. There is an exact sequence

0 // HomR(N, ker(p)) // HomR(N,M) EDBC
GF

p◦−

@A
// HomR(N,X) // Ext1R(N, ker(p))

By Proposition 3.38, Ext1R(N, ker(p)) = 0. Therefore every map N → X

factors through p, as desired.

2. The proof above shows that each of p, p′ factors through the other, so there

is a diagram

M
p

//

s
��

X

M ′ p′
//

r
��

X

M
p

// X

Since p(rs) = p and p is right minimal, rs must be an isomorphism. This

implies M ′ = im(s) ⊕ ker(r); identifying im(s) with M gives p′ |im(s)= p

and p′ |ker(r)= 0.
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Remark 3.43. One may at first guess that if N ∈ mod(R) has codepth t, an

MCM approximation of N could be obtained by taking the tth syzygy syztR(N)

of N , which is at least guaranteed to be maximal Cohen-Macaulay. This is not

correct. Instead, the MCM approximation is a dual of a sufficiently high syzygy

of a dual of N (at least, when N is Cohen-Macaulay, i.e. its depth equals its

Krull dimension; the general case is more complicated). More precisely, letting

M∨ denote the Matlis dual Ext
codepth(M)
R (M,ω), an MCM approximation of N is

(syztR(N
∨))∨. See [LW12, Proposition 11.15] for details.

Corollary 3.44. CM(R) is a contravariantly finite subcategory of mod(R).

4 K-Theory of Additive and Exact Categories

4.1 Exact Categories and K-theory

Definition 4.1. An exact category is an essentially small additive category E

together with a class of sequences M ′ // //M // //M ′′ , called conflations, such

that there is a fully faithful additive functor f from E into an abelian category

A satisfying the following two properties:

1. f reflects exactness; that is, M ′ // //M // //M ′′ is a conflation in E if

and only if 0 → f(M ′) → f(M) → f(M ′′) → 0 is a short exact sequence in

A.

2. E is closed under extensions in A; that is, if 0 → f(M ′) → A→ f(M ′′) → 0

is exact in A, then A ∼= f(M) for some M in E .

A map is called an inflation (resp., deflation) if it occurs as the first (resp.,

second) arrow of a conflation. We say E ′ is an exact subcategory of E if E ′ and
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E are exact categories, E ′ is a subcategory of E , the inclusion functor E ′ → E

reflects exactness, and E ′ is closed under extensions in E .

Note that the definition of an exact category is self-dual, since the opposite

of an abelian category is again abelian. There is also an intrinsic definition of

an exact category, which one can piece together easily using the following fact:

if E is an exact category, the Yoneda embedding of E into the category A of left

exact functors from E to abelian groups satisfies properties 1 and 2 above.

If each Ei is an exact category, we endow
⊕

Ei with the structure of exact

category by setting the conflations to be the sequences which are coordinate-wise

conflations. This direct sum is then the coproduct with respect to exact functors

between exact categories.

Any additive category A has an exact structure in which the conflations are

the direct-sum sequences

0 //M ′
( 10 ) //M ′ ⊕M

( 0 1 )
//M // 0.

This defines a left adjoint l to the forgetful functor f from exact categories to

(essentially small) additive categories. For an exact category E , set E⊕ := lfE –

that is, E⊕ is the additive category E with the direct sum sequences for confla-

tions. (lA defines a minimal exact structure on A. Incidentally, if A is weakly

idempotent complete, it also has a maximal exact structure – see [Cri12].)

Examples 4.2. If R is a ring, the category mod(R) of finitely presented R-mod-

ules is an exact category in which the conflations are the short exact sequences.

Similarly, the category proj(R) of finitely generated projective R-modules is an

exact category with short exact sequences for conflations. Note that every con-

flation in proj(R) is split.
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Definition 4.3. Let E be an exact category. A complex (X•, d•) in E is called

acyclic if there is a factorization of each differential di

· · · // X i di //

pi �� ��
✽✽

✽✽
✽✽

✽ X i+1 // · · ·

Zi+1
@@ si+1

@@✂✂✂✂✂✂✂

such that

Zi // si // X i pi
// // Zi+1

is a conflation for each i. The category Acb(E) is defined to be the full subcategory

of Chb(E) consisting of the acyclic complexes. The bounded derived category

of E , written Db(E), is defined to Verdier quotient of the homotopy category

Hob(E) by the triangulated subcategory consisting of those complexes which are

homotopy equivalent to acyclic complexes. The theory of derived categories of

exact categories is developed in [Kel96a].

A subcategory wE ⊂ E of an exact category E is called a subcategory of

weak equivalences if it contains all objects of E and all isomorphisms in E and

satisfies Waldhausen’s Gluing Lemma [Wal83, 1.2]. We define the K-theory of

an exact category E relative to a subcategory of weak equivalences wE ⊂ E using

Waldhausen’s S·-construction [Wal83, 1.3]. It is denoted simply by K(E), and it

is an Ω-spectrum whose nth space is

K(E)n = Ω|wSn· E|.

If no subcategory of weak equivalences is specified, the K-theory of an exact

category E is taken relative to the subcategory iE of isomorphisms.

Set Kn(E) = πn(K(E)). For a ring R, set

K(R) := K(proj(R)) Ki(R) := πi(K(R))

K ′(R) := K(mod(R)) K ′
i(R) := πi(K

′(R))
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Then K0(R) is the usual Grothendieck group of R. If R is a commutative local

ring, K1(R) ∼= R×.

4.2 Quillen’s Main Theorems

We now recall the main theorems of Quillen K-theory. These theorems will

almost always suffice for our purposes. Occasionally, however, we will need the

more sophisticated theorems WaldhausenK-theory, and we recall those in Section

4.4.

Theorem 4.4 ([Qui73, §3, Cor. 3]). Suppose

0 // Fn // · · · // F0
// 0

is an exact sequence of exact functors from E to E ′. Then
n∑
j=0

(−1)jK(Fj) is

nulhomotopic, so induces zero maps on K-groups.

Theorem 4.5 ([Qui73, Cor. 1 to Thm. 3]). Let E be an exact category and

P ⊂ E an exact subcategory. Suppose that

1. for any conflation M // // P // // P ′ with P and P ′ in P, M is isomor-

phic to an object in P; and

2. every object of E has a P-resolution of finite length.

Then the inclusion functor induces a homotopy equivalence K(P) ≃ K(E).

Actually, the hypotheses of Theorem 4.5 imply the inclusion P → E is a

derived equivalence. This follows from the following useful fact.

Lemma 4.6 ([Kel96a, Theorem 12.1]). Let D ⊂ E be an exact subcategory. Sup-

pose that every conflation B′ // // B // // A with A in D fits into a commutative
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diagram

A′′ // //

��

A′ // //

��

A

B′ // // B // // A

in which A′′ and A′ are in D and the top row is a conflation. Then the canonical

functor Db(D) → Db(E) is fully faithful.

Condition 1 of the resolution theorem 4.5 easily implies that the hypothesis

of Lemma 4.6 applies to P ⊂ E , and condition 2 then implies the derived functor

is essentially surjective.

Definition 4.7. Let X be an abelian category and Y ⊂ X a Serre subcategory.

We say an exact functor f : X → Z into an abelian category Z annihilates Y

if f(Y ) ∼= 0 for each Y in Y . A Serre quotient of X by Y is an exact functor

p : X → W into an abelian category W such that p annihilates Y and satisfies the

following universality property: given any exact functor f : X → Z annihilating

Y , there is an exact functor g : W → Z such that gp is naturally isomorphic to

f , and the choice of such g is unique up to natural isomorphism.

Theorem 4.8 ([Qui73, Theorem 5]). Let A be an abelian category with a set of

isomorphism classes of objects. Let B ⊂ A be a Serre subcategory, i : B → A the

inclusion functor, and p : A → C a Serre quotient of A by B. Then

K(B)
K(i)

// K(A)
K(p)

// K(C)

is a homotopy fiber sequence.

Theorem 4.9 ([Qui73, Thm. 4]). Let A be an abelian category and B a nonempty

full subcategory closed under subobjects, quotients, and finite products in A. Sup-

pose that every object F in A admits a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = F
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with Fi/Fi−1 in B for each i.

Then the inclusion functor induces a homotopy equivalence K(B) ≃ K(A).

4.3 Frobenius Categories

Definition 4.10. An object X of an exact category E is called projective if

the functor E(X,−) : E → (abelian groups) is exact. We say E has enough

projectives if for every object X of E , there is a deflation P // // X with P

projective. Define the notions of injective and enough injectives dually. An

exact category is called a Frobenius category if it has enough projective and

injective objects and the projective and injective objects coincide; we denote the

subcategory of projective-injective objects of a Frobenius category E by prinj(E).

A map of Frobenius pairs is an exact functor taking projective-injective objects

to projective-injective objects. The stable category E of the Frobenius category

E is the additive quotient of E/prinj(E). Define a functor Σ : E → E on objects

by the property that for each X there is a conflation

X // // I // // ΣX

with I ∈ prinj(E), and extend Σ to morphisms in the obvious way. E , together

with the suspension functor Σ, is a triangulated category in which the exact

triangles are exactly those which are isomorphic to the images of conflations.

A Frobenius pair E is a pair (E1, E0) of Frobenius categories such that E0 is a

subcategory of E1 and the inclusion functor is a map of Frobenius categories. A

map of Frobenius pairs (E1, E0) → (F1,F0) is just a map of Frobenius categories

E1 → F1 taking E0 to F0. The derived category D(E) of a Frobenius pair E =

(E1, E0) is defined to be the Verdier quotient E1/E0.

Example 4.11. If E is an exact category, Chb(E) is a Frobenius category in
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which the projective-injective objects are exactly the contractible complexes, and

its stable category is the homotopy category Hob(E). The inclusion Acb(E) →

Chb(E) is a map of Frobenius categories, and the derived category of the pair

(Chb(E),Acb(E)) is the bounded derived category of E .

If E = (E1, E0) is a Frobenius pair, the subcategory wE0E1 ⊂ E1 consisting of

the morphisms in E1 that become invertible in D(E) is a subcategory of weak

equivalences. For example, the subcategory wAcb(E)Ch
b(E) is the subcategory of

quasi-isomorphisms in Chb(E). The K-theory K(E) of E is then defined to be

the K-theory of the exact category E1 relative to wE0E1.

The next theorem shows that for K-theory, the setting of Frobenius categories

subsumes the setting of exact categories.

Theorem 4.12 ([TT90, Theorem 1.11.7]). Let E be an exact category and

iE ⊂ E the subcategory of isomorphisms in E . The inclusion of categories with

weak equivalences (E , iE) → (Chb(E), wAcb(E)Ch
b(E)), sending an object to the

associated complex concentrated in degree zero, induces a homotopy equivalence

K(E) ≃ K(Chb(E),Acb(E)).

4.4 Waldhausen Approximation and Localization

For future reference, we state here the cofinality, approximation, and localization

theorems for the K-theory of Frobenius categories.

Theorem 4.13 ([Sch06, Proposition 11.15, 11.17]). Let f : E → F be a map

between Frobenius pairs, and D(f) : D(E) → D(F) the induced functor on derived

categories.

1. (Cofinality) If D(f) is a fully faithful inclusion identifying D(E) with a

dense subcategory of D(F), the homotopy fiber of K(f) : K(E) → K(F) is
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(-1)-connected. Consequently Ki(f) : Ki(E) → Ki(F) is an isomorphism

for i > 0 and a monomorphism for i = 0.

2. (Approximation) If D(f) is an equivalence, K(f) : K(E) → K(F) is a

homotopy equivalence.

Theorem 4.14. Let E be a Frobenius category and T0 ⊂ T1 ⊂ E triangulated

subcategories. For i = 0, 1, let Ei be the full subcategory of E consisting of objects

in Ti. Then E0 and E1 are Frobenius categories, and the inclusion functors induce

a homotopy fiber sequence of K-theory spectra

K(E1, E0) //K(E , E0) // K(E , E1)

Remark 4.15. Waldhausen localization 4.14 does not automatically imply Quil-

len localization 4.8, because not every short exact sequence of abelian categories

induces a short exact sequence of bounded derived categories (see [Kel96b, 1.15

Example c)]). We emphasize this point because the proof of Corollary 4.18 in

the next section will use Quillen localization, and it is not clear how to prove the

same statement using Waldhausen localization instead.

4.5 A Homotopy Fiber Sequence

Let A be a coherent additive category and B ⊂ A a contravariantly finite

subcategory. Let r : mod(A) → mod(B) be the restriction functor. Let

mod0(A) = ker(r) ⊂ mod(A), i.e. mod0(A) is the category of finitely presented

functors F on A satisfying F |B∼= 0. mod0(A) is a Serre subcategory of mod(A),

and we shall prove in Proposition 4.17 that r is a Serre quotient of mod(A) by

mod0(A).

Lemma 4.16. r has a left adjoint s : mod(B) → mod(A). The unit η : idmod(B) →

32



rs for the adjunction is an isomorphism, and the counit ε : sr → idmod(A) becomes

invertible upon application of r.

Proof. Define s : mod(B) → mod(A) as follows. For each F ∈ mod(B), fix

a projective presentation B(−, B1) // B(−, B0) // F // 0 of F , and let s(F ) ∈

mod(A) be the functor fitting into the exact sequence

A(−, B1) // A(−, B0) // s(F ) // 0.

Given a map φ : F → F ′ in mod(B) and chosen projective presentations

B(−, B1) // B(−, B0) // F // 0

B(−, B′
1) // B(−, B′

0) // F ′ // 0

there is a lift (φ0 : B0 → B′
0, φ1 : B1 → B′

1) of φ to the projective presentations.

This lift induces s(φ) : s(F ) → s(F ′) making the following diagram commute.

A(−, B1) //

A(−,φ1)
��

A(−, B0) //

A(−,φ0)
��

s(F ) //

s(φ)
��

0

A(−, B′
1) // A(−, B′

0) // s(F ′) // 0

The choice (φ0, φ1) is unique up to homotopy: given another choice (φ′
0, φ

′
1),

φ0 − φ′
0 factors through B′

1. In this case A(−, φ0) − A(−, φ′
0) factors through

A(−, B′
1), so the two lifts induce the same map s(φ). Therefore the choice of

s(φ) is independent of the choices of φi. One easily verifies that this implies that

s is functorial.

Define the adjunction map σ : mod(B)(G, r(F )) → mod(A)(s(G), F ) as fol-

lows. First define σ for G = B(−, B) and F = A(−, A) representable: in this

case, s(G) is canonically isomorphic to A(−, B), and we define σ to be the com-

position of Yoneda isomorphisms mod((B)(−, B),A(−, A) |B) ∼= (A(−, A)) |B
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(B) = A(B,A) ∼= mod(A)(A(−, B),A(−, A)). Since both mod(B)(G, r(F )) and

mod(A)(s(G), F ) are right exact in F when G is representable, and since F is

a finitely presented functor, our definition of σ extends uniquely to an isomor-

phism, natural in G and F , defined on all representable G and finitely presented

F . Now since both mod(B)(G, r(F )) and mod(A)(s(G), F ) are contravariant left

exact in G, σ extends uniquely to all finitely presented G.

The unit G → rs(G) is clearly an isomorphism for G representable, so it

is an isomorphism for all finitely presented G. It is a formal consequence that

r(ε : sr → idmod(A)) is an isomorphism.

Proposition 4.17. r : mod(A) → mod(B) is a Serre quotient of mod(A) by

mod0(A).

Proof. Let f : mod(A) → Z by an exact functor annihilating mod0(A); we need

to show there is an exact functor g : mod(B) → Z, unique up to isomorphism,

satisfying gr ∼= f . Set g = fs, where s is the left adjoint to r from Lemma 4.16.

We first prove g is exact. Since s is a left adjoint, s is right exact, so g is

right exact. To see that g is left exact, suppose ι : F → G is a monomorphism

in mod(B). Since id ∼= rs, rs(ι) is injective, so ker(s(ι)) ∈ mod0(A). Since f is

exact and annihilates mod0(A), ker(fs(ι)) ∼= f(ker(s(ι))) ∼= 0, so g(ι) = fs(ι) is

a monomorphism.

Next we show f ∼= gr. By Lemma 4.16, r(εF ) : rsr(F ) → r(F ) is invertible for

any F ∈ mod(A), so ker(εF ) and coker(εF ) are in mod0(A). Since f annihilates

mod0(A), f(εF ) must be an isomorphism. This proves that f(ε) : ge = fse → f

is an isomorphism, as desired.

g satisfies the necessary uniqueness property: if g′ : mod(B) → Z is another

exact functor satisfying g′e ∼= f , then g′ ∼= g′es ∼= fs ∼= ges ∼= g.
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Corollary 4.18. Let A be a coherent additive category, B ⊂ A a contravari-

antly finite subcategory, and r : mod(A) → mod(B) the restriction. There is a

homotopy fiber sequence of K-theory spectra

K(ker(r)) // K(mod(A)) // K(mod(B))

Proof. This is a direct consequence of Proposition 4.17 and Theorem 4.8.

5 K1 of a Krull-Schmidt Additive Category

The main result of this section is the exact sequence of Theorem 5.12, which can

be used to decompose K1 of a Krull-Schmidt additive category. Later we will

study the homotopy fiber sequence (7.5), whose middle term is the K-theory of

a Krull-Schmidt additive category, and the results of this section will be useful

then.

5.1 K1 of an Additive Category

Let A be an additive category. We shall consider A to be an exact category with

the split exact structure, in which the conflations are the sequences isomorphic to

a direct sum sequence A // // A⊕ B // // B . Set Aut(A) to be the category whose

objects are pairs (A, φ) with A in A and φ ∈ AutAA, and whose morphisms are

defined by

HomAut(A)((A, φ), (A
′, φ′)) = {f ∈ HomA(A,A

′)|φ′f = fφ}.

Aut(A) has an exact structure in which a sequence is a conflation iff it is a

conflation in A. Recall from ([She82, §3]) that there is a natural surjection

K0(Aut(A)) // // K1(A)
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whose kernel is generated by elements of the form [(A,αβ)]− [(A,α)]− [(A, β)].

Denote by [A, φ], or just [φ], the image in K1(A) of the K0-class of the object

(A, φ) of Aut(A).

Lemma 5.1. Let f : A → A′ be a morphism in A, and let φ =
(

1A 0
f 1A′

)
∈

AutA(A ⊕ A′). Then in K1(A), [φ] = 0. Similarly, given any g : A′ → A,
[( 1A g

0 1A′

)]
= 0.

Proof. There is a conflation in Aut(A)

(A′, 1A′) // // (A⊕ A′, φ) // // (A, 1A)

so that [φ] = [1A′ ] + [1A] = 0. The second statement is proved the same way.

Remark 5.2. Suppose φ, ψ ∈ AutA(
⊕

Ai) are row- or column-equivalent – that

is, the matrices defining φ and ψ differ only up to left- or right-multiplication

by elementary matrices, which are identity along the diagonal and zero off the

diagonal except in one entry. Then using the lemma above, one sees easily that

[φ] = [ψ].

5.2 Automorphisms in a Krull-Schmidt Category

The next lemma gives us an easy criterion for recognizing automorphisms in a

Krull-Schmidt additive category.

Lemma 5.3. Suppose A is Krull-Schmidt and A =
d⊕
i=1

Ani

i with A1, . . . , Ad pair-

wise nonisomorphic indecomposables in A. Suppose φ ∈ EndAA, and denote by

φij the induced morphism A
nj

j → Ani

i . Then φ is invertible if and only if for all

i, φii is invertible.

Proof. Let R = EndAA and Ri = EndA(A
ni

i ). Using Proposition 2.15, one sees
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that the Jacobson radical of R is

rad(R) = radA(⊕A
ni

i ,⊕A
nj

j ) = {φ ∈ R|φii ∈ rad(Ri) for all i},

so that R/rad(R) =
∏
Ri/rad(Ri). Therefore φ is invertible iff φ is invertible in

R/rad(R), iff φii is invertible in Ri/rad(Ri) for all i, iff φii is invertible for all

i.

Using this lemma we can deduce the following.

Corollary 5.4. Assume A is Krull-Schmidt, and let B ⊂ A be a full additive

category closed under summands. Let A be an object of A which has no nonzero

summand in B, and let B be an object of B. Let φ = ( a bc d ) ∈ AutA(A⊕B). Then

a and d are invertible.

5.3 Localization of an Additive Category

Let A be an additive category, and let B ⊂ A be a full additive subcategory

closed under summands. Let e : B → A be the inclusion and s : A → A/B

the quotient of A by the ideal consisting of morphisms factoring through B. Let

w ⊂ A be the multiplicative set consisting of maps which are a composition of

the form

A i // A⊕ B
∼= // A′ ⊕ B′ p

// A′

with A and A′ in A, B and B′ in B, i and p the canonical inclusion and projection,

and the middle map an isomorphism. It is easy to check that w is closed under

sums and compositions. An additive functor out of A sends all morphisms in w

to isomorphisms iff it sends all objects in B to zero, so s is initial among additive

functors inverting w. In this sense A/B is simultaneously the quotient of A by

B and the localization of A at w.

Consider the following conditions on a morphism f : C → C ′:
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1. For any choice of isomorphisms α : C
∼
−→ A ⊕ B, α′ : C ′ ∼

−→ A′ ⊕ B′,

with B,B′ in B and A,A′ not having any nonzero summands in B, the

composition

A
iA // A⊕B

α′fα−1

// A′ ⊕B′
p′A // A′ (5.5)

is an isomorphism.

2. For some choice of isomorphisms α : C
∼
−→ A⊕ B, α′ : C ′ ∼

−→ A′ ⊕ B′, with

B,B′ in B and A,A′ not having any nonzero summands in B, (5.5) is an

isomorphism.

3. f is in w.

Lemma 5.6. Among the above conditions, 1 ⇒ 2 ⇒ 3. If A is Krull-Schmidt,

then 3 ⇒ 1.

Proof. 1 ⇒ 2 is trivial. To show 2 ⇒ 3, say α′fα−1 : A⊕ B → A′ ⊕ B′ is given

by the matrix
(
φ a
b c

)
. Then

A⊕B
α′fα−1

//

iA⊕B

��

A′ ⊕ B′

A⊕ B ⊕ B′
(

φ a 0
0 1 0
b c 1

)

// A′ ⊕B ⊕B′

pA′⊕B′

OO

commutes, and the lower horizontal map is an isomorphism with inverse(
φ−1 −φ−1a 0
0 1 0

−bφ−1 bφ−1a−c 1

)
. So α′fα−1 is in w, and therefore f is in w.

To show 3 ⇒ 1, assume A is Krull-Schmidt and f is in w. Given decompo-

sitions α : C
∼
−→ A ⊕ B, α′ : C ′ ∼

−→ A′ ⊕ B′, there is by hypothesis a commuting
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diagram as below.

A //

iA
��

A′

A⊕B
α′fα−1

//

iA⊕B

��

A′ ⊕ B′

pA′

OO

A⊕B ⊕B1

∼= // A′ ⊕B′ ⊕B′
1

pA′⊕B′

OO

By Corollary 5.4, the top horizontal map is an isomorphism.

Remark 5.7. If A is Krull-Schmidt, it follows from the above characterization

of maps in w that w satisfies the 2-out-of-3 property: if two out of f , g, and f ◦ g

are in w then all three are. In this case w is exactly the class of maps in A which

become invertible in A/B.

5.4 The Exact Sequence

Now we proceed to our destination, Theorem 5.12. We adopt the notation of the

previous section, with the added assumption that A is Krull-Schmidt. In this

case B and A/B are automatically Krull-Schmidt.

Lemma 5.8. Suppose A and A′ are objects of A with no nonzero summands in B.

Suppose ψ ∈ A(A,A′), and assume the image ψ of ψ in A/B is an isomorphism.

Then ψ is itself an isomorphism.

Proof. First we show that

ker(EndAA→ EndA/BA) ⊂ rad(EndAA).

That is, we show that given morphisms A
f

// B
g

// A with B in B, gf ∈

rad(EndAA). It suffices, using the characterization of rad(EndAA) in the proof

of Lemma 5.3, to show that for each indecomposable summand Ai ⊂ A, the
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induced map Ai
fi // B

gi // Ai is in rad(EndAAi). But this follows from the

fact that EndAAi is local and Ai is not a summand of B.

Since ψ is invertible, there is φ ∈ A(A′, A) such that φψ−idA ∈ ker(EndAA→

EndA/BA) and ψφ − idA′ ∈ ker(EndAA
′ → EndA/BA

′). Therefore φψ − idA ∈

rad(EndAA) and (by the same argument) ψφ − idA′ ∈ rad(EndAA
′), so φψ and

ψφ are both invertible. It follows that ψ is invertible.

Lemma 5.9. Suppose A is an object of A with no nonzero summand in B, B is

an object of B, and α =
(
φ a
b c

)
∈ AutA(A⊕B). Then [α]− [φ] ∈ imK1(e).

Proof. Note that φ is an automorphism by Corollary 5.4. Using Remark 5.2,

compute:

[
A⊕ B,

(
φ a
b c

)]
=

[
A⊕B,

(
φ a
0 c−bφ−1a

)]

=
[
A⊕B,

(
φ 0
0 c−bφ−1a

)]

= [A, φ] + [B, c− bφ−1a]

≡ [A, φ] (mod imK1(e))

Lemma 5.10. Suppose (A, φ) and (A,ψ) are objects of Aut(A) such that φ = ψ

in A/B. Then [φ]− [ψ] ∈ imK1(e).

Proof. Since φ = ψ, φ − ψ factors as a composition A
f

// B
g

// A through

some object B of B. Using Remark 5.2, compute:

[A, φ] =
[
A⊕B,

(
φ 0
0 1B

)]

=
[
A⊕B,

(
φ 0
f 1B

)]

=
[
A⊕B,

(
φ−gf −g
f 1B

)]

≡ [A,ψ] (mod imK1(e)), by Lemma 5.9
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Therefore [A, φ] ≡ [A,ψ] (mod imK1(e)).

Lemma 5.11. Suppose (C, α) and (C ′, α′) are objects of Aut(A) such that

(C, α) ∼= (C ′, α′) in Aut(A/B). Then [α]− [α′] ∈ imK1(e).

Proof. We may assume there are decompositions

(C, α) =
(
A⊕B,

(
φ a
b c

))
(C ′, α′) =

(
A′ ⊕B′,

(
φ′ a′

b′ c′

))

such that A and A′ have no nonzero summand in B and B and B′ are in B. By

assumption there is β : A⊕B → A′ ⊕B′ such that β is an isomorphism in A/B

and βα = α′β. Say β is given by a matrix of the form ( ψ ∗
∗ ∗ ). By Lemma 5.8, ψ

must be an isomorphism. Now, βα = α′β ⇒ ψφ = φ′ψ ⇒ φ = ψ−1φ′ψ so

[C, α] ≡ [A, φ] (mod imK1(e)), by Lemma 5.9

≡ [A,ψ−1φ′ψ] (mod imK1(e)), by Lemma 5.10

= [A′, φ′]

≡ [C ′, α′] (mod imK1(e)), by Lemma 5.9

Theorem 5.12. Suppose A is Krull-Schmidt. Then the sequence

K1(B)
K1(e)

// K1(A)
K1(s)

// K1(A/B) EDBC
GF

0

@A
// K0(B)

K0(e)
// K0(A)

K0(s)
// K0(A/B) // 0

is exact.

Proof. We show only that the sequence is exact atK1(A/B) andK1(A); the rest is

easy. To showK1(s) is surjective, take [A, φ] ∈ K1(A/B); after replacing (A, φ) by

an isomorphic object of Aut(A/B), we may assume A has no nonzero summands
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in B. Using Lemma 5.8, we see that any lift φ̃ of φ to A is automatically an

automorphism of A. Hence K1(s)([φ̃]) = [φ], as desired.

Next we show the sequence is exact at K1(A). Since K1(s) is surjective, any

element of kerK1(s) may be written as a sum of elements of the form

1. [A, φ]− [A′, φ′], for some φ ∈ AutAA and φ′ ∈ AutAA
′ with (A, φ) ∼= (A′, φ′)

in Aut(A/B)

2. [A, φ]− [A,α]− [A, β] for some φ, α, β ∈ AutAA with αβ = φ in A/B

3. [A, φ]− [A′, φ′]− [A′′, φ′′], for some (A, φ), (A′, φ′), and (A′′, φ′′) in Aut(A)

such that there is a conflation in Aut(A/B)

(A′, φ′) // // (A, φ) // // (A′′, φ′′)

We need to check that any such element is in imK1(e). Since an element of the

first form is also of the third form, we skip the check for elements of the first

form. For elements of the second form, observe that

[A, φ]− [A,α]− [A, β] = [A, φ]− [A,αβ] ∈ imK1(e)

by Lemma 5.10. So it remains to show any element of the third form is in

imK1(e).

Given (A, φ), (A′, φ′), and (A′′, φ′′) as in 3. above, there is an isomorphism in

Aut(A/B)

(A, φ) ∼=
(
A′ ⊕ A′′,

(
φ
′
h

0 φ
′′

))

for some h : A′′ → A′. Since
(
φ′ h
0 φ′′

)
is invertible, it follows by Lemma 5.11 that

[A, φ] ≡
[
A′ ⊕ A′′,

(
φ′ h
0 φ′′

)]
(mod imK1(e))

= [A′, φ′] + [A′′, φ′′]

and therefore [A, φ]− [A′, φ′]− [A′′, φ′′] ∈ imK1(e).
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Remark 5.13. There is a one-to-one correspondence between equivalence classes

of Krull-Schmidt categories with finitely many indecomposables and Morita

classes of semiperfect rings. The correspondence is defined by assigning to a

category A the ring (EndA(
⊕

[M ]∈ind(A)

M))op, and by assigning to a ring Λ the cat-

egory proj(Λ). Using this correspondence we may restate Theorem 5.12 as follows.

Let Λ be a semiperfect ring and e ∈ Λ an idempotent. Let

S = {x ∈ Λ | (1− e)x(1− e) ∈ Λ×}.

Then Λ/ΛeΛ coincides with the localization S−1Λ of Λ at S; that is, the projection

p : Λ → Λ/ΛeΛ is initial among S-inverting ring homomorphisms. Let f : Λ →

eΛe be the ring homomorphism x 7→ exe. Then the following sequence is exact.

K1(eΛe)
f∗

// K1(Λ)
p∗

// K1(S
−1Λ) EDBC

GF
0

@A
// K0(eΛe)

f∗
// K0(Λ)

p∗
// K0(S

−1Λ) // 0

(5.14)

Remark 5.15. Theorem 5.12 does not seem to follow from known localization

theorems in K-theory. In particular, since the functor Db(s) : Db(A) → Db(A/B)

between bounded derived categories may not be full, it may not induce an equiv-

alence between the Verdier quotient Db(A)/Db(B) (or even its idempotent com-

pletion) and Db(A/B). And Theorem 5.12 does not follow from [NR04, Theo-

rem 0.5]: the Tor-condition in that theorem is not necessarily satisfied in this

situation. See section 8 for details.

6 n-Cluster Tilting

6.1 Orders

In this section we will work in the rather general setting in which R is an order

over a complete local ring. For simplicity, we avoided this general setting when
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we discussed classical Auslander-Reiten theory in 3.2. But we will sometimes

need the extra generality when we apply the results from this section.

Definition 6.1. Let T be a complete regular local ring. A T -order is a T -algebra

R which is finitely generated projective as a left T -module. Note R may not be

commutative.

Let R be a T -order. R is called an isolated singularity if

gl. dim(R⊗T Tp) = dim Tp

for any nonmaximal prime ideal p of T , and R is called nonsingular if the above

equality holds for every prime ideal p of T . R is called a symmetric T -order if

HomT (R, T ) is isomorphic to R as an R-R-bimodule. A finitely generated left R-

module M is called (maximal) Cohen-Macaulay if it is projective as a T -module.

This definition coincides with the old one when R is a commutative Cohen-

Macaulay complete local ring. As before, we denote by CM(R) the category of

maximal Cohen-Macaulay R-modules.

Remark 6.2. Every commutative complete local Cohen-Macaulay ring contain-

ing a field is an order over a complete regular local subring ([Mat89][29.4]). There-

fore many of the rings we have been interested in so far are T -orders for some

T . When R is a T -order, it sometimes happens that endomorphism rings of

R-modules are also T -orders; we will apply our results in this setting as well.

6.2 n-Cluster Tilting Categories

In this section we introduce Iyama’s n-cluster tilting theory; see [Iya08] for a

more comprehensive overview.

Notation 6.3. For this section and the next, R denotes an order over a complete
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regular local ring of Krull dimension d, and we always assume R is an isolated

singularity.

Definition 6.4. Let E be an exact category with enough projectives. For objects

X, Y in E we write X ⊥n Y if ExtiE(X, Y ) = 0 for 0 < i ≤ n. For an exact

subcategory C ⊂ E , put

C⊥n = {X ∈ E|M ⊥n X for all M ∈ C}

⊥nC = {X ∈ E|X ⊥n M for all M ∈ C}

C is called an n-cluster tilting subcategory of E if it is functorially finite (see

Definition 2.5) and C = C⊥n−1 =⊥n−1 C. An object L of E is called n-cluster

tilting if add(L) is an n-cluster tilting subcategory of E .

Examples 6.5. 1. The only 1-cluster tilting subcategory of E is E itself, so

a 1-cluster tilting object in E is simply an additive generator for E . In

particular, CM(R) has a 1-cluster tilting object if and only if R is of finite

CM type.

2. The motivating example for the definition of n-cluster tilting comes from

invariant theory. As in section 3.4, let k be a field and G a finite subgroup

of GLd(k) such that G does not contain any nontrivial pseudo-reflections

and |G| is invertible in k. Let R be the invariant subring k[[x1, . . . , xd]]
G. If

R is an isolated singularity, the R-module k[[x1, . . . , xd]] is a (d− 1)-cluster

tilting object in CM(R) (see [Iya07b, 2.5]).

Lemma 6.6. Let C ⊂ CM(R) be a contravariantly finite subcategory with C⊥n =

C. If X ∈ C⊥i for some i ≤ n, then there is an exact sequence

0 // Cn−i
fn−i

// · · ·
f1

// C0
f0

// X // 0
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with C0, . . . , Cn−i ∈ C such that each fi is right minimal and

0 // (−, Cn−i)
(−,fn−i)

// · · ·
(−,f1)

// (−, C0)
(−,f0)

// (−, X) // 0

is exact on C.

Proof. The proof is by decreasing induction on i. If i = n then X ∈ C⊥n ⊂ C

and we’re done. Suppose then that i < n. As C is functorially finite in

CM(R), one may choose C0 ∈ C and right minimal f0 : C0 → X such that

(−, C0)
(−,f0)

// (−, X) // 0 is exact on C. Since R ∈ C, f0 must be an epimor-

phism. This implies Ext1R(−, ker(f0)) vanishes on C. Moreover from the exact

sequences

ExtjR(−, X) // Extj+1
R (−, ker(f0)) // Extj+1

R (−, C0)

and the fact that ExtjR(−, X) and Extj+1
R (−, C0) both vanish on C for 0 < j ≤ i,

it follows that ker(f0) ∈ C⊥i+1 . By the inductive hypothesis there is an exact

sequence

0 // Cn−i
fn

// · · ·
f1

// C1
β

// ker(f0) // 0

with C1, . . . , Cn−i ∈ C such that

0 // (−, Cn−i)
(−,fn)

// · · ·
(−,f1)

// (−, C1)
(−,β)

// (−, ker(f0)) // 0

is exact on C. Setting f0 = αβ yields the desired resolution of X.

Corollary 6.7. Let C be an n-cluster tilting subcategory of CM(R). For any

object X of CM(R), there is an exact sequence

0 // Cn−1
fn

// · · ·
f1

// C0
f0

// X // 0

such that

0 // (−, Cn−1)
(−,fn)

// · · ·
(−,f1)

// (−, C0)
(−,f0)

// (−, X) // 0

is a minimal projective resolution of (−, X) in mod(C).
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Remark 6.8. In particular, Corollary 6.7 states when C ⊂ CM(R) is n-cluster

tilting, every maximal Cohen-Macaulay module has a bounded resolution in C.

This suggests that the inclusion functor C → CM(R) might induce an essentially

surjective functor on bounded derived categories. I have not been able to prove

this. In particular, Keller’s criterion 4.6 does not apply here.

However, Corollary 6.7 does imply the Yoneda functor C⊕ → mod(C) is a

derived equivalence, as we now prove.

Proposition 6.9. Let C ⊂ CM(R) be an n-cluster tilting subcategory. Then

the Yoneda functor C⊕ → mod(C), M 7→ C(−,M), is a derived equivalence.

In particular, since CM(R) is trivially a 1-cluster tilting subcategory of itself,

CM(R)⊕ → mod(CM(R)) is a derived equivalence.

Proof. We use Keller’s criterion 4.6. Let F ′ // // F
p
// // h(M) be a short exact

sequence of finitely presented functors on C. Then since h(M) is projective, p

has a right inverse i. Since the following diagram commutes, Keller’s criterion is

satisfied.

0 // //

��

h(M)
id // //

i

��

h(M)

F ′ // // F
p

// // h(M)

Therefore Db(h) : Db(C⊕) → Db(mod(C)) is fully faithful. The essential image of

Db(h) is a full subcategory of Db(mod(C)) closed under cones and suspensions, and

it contains all complexes concentrated in degree zero by Corollary 6.7. Therefore

Db(h) is essentially surjective.

Remark 6.10. One can deduce Corollary 4.18 from a theorem of Schlicht-

ing when A = C ⊂ CM(R) is an n-cluster tilting subcategory. According to

[Sch06, Proposition 2], K(mod(C)0) is the homotopy fiber of K(id) : K(C⊕) →

K(mod(C)). Now Corollary 4.18 follows from the fact that h : C⊕ → mod(C) and
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the inclusion C → mod(R) are K-theory equivalences (the former by Proposition

6.9, the latter by the resolution theorem 4.5).

6.3 Higher Auslander-Reiten Theory

In this section we explain the main theorems of higher Auslander-Reiten theory

([Iya07b]). This theory generalizes the classical Auslander-Reiten theory of 3.2.

Adopt the notation from 6.3, and let C ⊂ CM(R) be an n-cluster tilting

subcategory.

Proposition 6.11. For any indecomposable nonprojective object X of CM(R),

there is an exact sequence

0 // Cn
fn

// · · ·
f1

// C0
f0

// X // 0

such that

0 // (−, Cn)
(−,fn)

// · · ·
(−,f1)

// (−, C0)
(−,f0)

// (−, X)

is a minimal projective resolution of (−, X)/radCM(R)(−, X) in mod(C).

Proof. There is a minimal right almost split map f : Z → X in CM(R); this is

3.20 if R is commutative CM local, or [Aus86a][Main Theorem] for the general

case. Choose a right C-approximation g : C → Z of Z, and let f0 : C0 → X be

a right minimal version of gf . Then (−, f0) is a projective cover of radC(−, X).

By Corollary 6.7, there is a complex

0 // Cn
fn

// · · ·
f2

// C1

f ′1 // ker(f0) // 0

with all maps right minimal and such that

0 // (−, Cn)
(−,fn)

// · · ·
(−,f2)

// (−, C1)
(−,f ′1) // (−, ker(f0)) // 0
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is exact. Setting f1 to be the composition of f ′
1 with the inclusion ker(f0) → C0

yields the desired complex.

A sequence as in Proposition 6.11 is called an n-Auslander-Reiten sequence.

Note that a 1-Auslander-Reiten sequence is just an Auslander-Reiten sequence.

The next theorem follows easily from results of Auslander; our proof mimics

one in [Yos90].

Theorem 6.12. Suppose C has an additive generator. Then every functor F in

mod0(C) admits a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = F

with Fi in mod0(C) and Fi/Fi−1 simple in Mod(C) for all i.

Proof. F has a presentation of the form

C(−, N)
C(−,f)

// C(−,M) // F // 0

for some epimorphism f : N // //M in C. Set K = ker(f), so F is a subfunctor

of Ext1R(−, K). For any module L in C and prime p 6= m, Lp is a maximal Cohen-

Macaulay Rp-module; since Rp is regular local, Lp is in fact a free Rp-module.

Therefore (Ext1R(L,K))p = Ext1Rp
(Lp, Kp) = 0. Since Ext1R(L,K) is supported

only at m, it must be a finite length R-module. Therefore the submodule F (L)

is finite length as well.

Now let L be an additive generator for C. The proof proceeds by induction on

the length of F (L). If length(F (L)) = 0, F vanishes on add(L) = C, so F ∼= 0 and

F trivially admits the desired filtration. Suppose, then, that length(F (L)) > 0,

and assume that any functor G in mod0(C) with length(G(L)) < length(F (L))

admits a filtration as above. Choose an indecomposable M in C with F (M) 6= 0;
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then choose an epimorphism of RM -modules p : F (M) −→ κopM . p extends to

a natural transformation π : F −→ SM . Let G = ker(π), so there is an exact

sequence

0 // G // F // SM // 0 .

Therefore length(G(L)) < length(F (L)). Since G is a subfunctor of F , G is in

mod0(C), so G admits the desired filtration. From the exact sequence above, it

follows that F admits such a filtration as well.

The next proposition is a triangulated version of Theorem 6.12.

Proposition 6.13. Let C ⊂ CM(R) be an n-cluster tilting subcategory, and as-

sume C has an additive generator L. Let Ho(Acb(C)) be homotopy category of the

category of bounded acyclic complexes in C. (Note that by Lemma 3.9, a bounded

complex in C is acyclic in the sense of Definition 4.3 if and only if it is acyclic

as a complex of R-modules.)

Then Ho(Acb(C)) is generated, as a triangulated category, by the n-Auslander-

Reiten sequences.

Proof. Let

Y : · · · // Yi−1
di−1

// Yi
di // Yi+1

// · · ·

be a bounded acyclic complex in C. Denote by (−, Y ) the corresponding complex

in mod(C)

(−, Y ) : · · · // (−, Yi−1)
(−,di−1)

// (−, Yi)
(−,di)

// (−, Yi+1) // · · ·

Let H i
Y be the homology of (−, Y ) at (−, Yi), i.e. H

i
Y = ker(−, di)/im(−, di−1).

Then H i
Y (R) = 0 so H i

Y ∈ mod0(C). By Theorem 6.12, H i
Y is of finite length in

Mod(C). Define lY =
∑

length(H i
Y ). We proceed by induction on lY .
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First we prove that when lY = 0, Y is contractible, so Y is certainly in

Ho(Acb(C)). This requires a separate induction on the number of nonzero terms

in the complex Y . Let i be the maximum integer such that Yi+1 6= 0.

(−, Yi)
(−,di)

// (−, Yi+1) // 0

is exact on C and Yi+1 ∈ C, so there is s : Yi+1 → Yi such that dis = idYi+1
. Y is

therefore a direct sum of the complex

· · · // Yi−2
di−1

// Yi−1
di // coker(s) // 0

and a shift of the complex

0 // Yi Yi // 0.

Since s is a split monomorphism, coker(s) ∈ mod(C) so the first complex is

contractible by induction. Therefore Y is contractible.

Suppose now that lY > 0, and choose i such thatH i
Y 6= 0. By the classification

of simple functors (2.16),H i
Y must have a subfunctor SM for some indecomposable

nonprojective M ∈ C. Let

CM : 0 // Cn
fn

// · · ·
f1

// C0
f0

//M // 0

be the n-Auslander-Reiten sequence ending in M , considered as a complex with

M in degree i, and let (−, CM) be the associated complex

0 // (−, Cn)
(−,fn)

// · · ·
(−,f1)

// (−, C0)
(−,f0)

// (−,M)

in mod(C). Since (−, CM) is a projective resolution of (a shift of) SM in mod(C),

the inclusion SM
� � // Hi

� � // (−, Yi+1) lifts to a map of complexes (−, g) :

(−, CM) → (−, Y ), induced by some map g : CM → Y . Let Z = cone(g), a

complex in C. By the long exact sequence in homology associated to the mapping

cone sequence (−, CM)
(−,g)

// (−, Y ) // (−, Z) , one sees that lZ = lY − 1. By

induction, Z is in Ho(Acb(C)), so Y is as well.
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6.4 Noncommutative Crepant Resolutions

As before, let d be the Krull dimension of the base commutative ring. (d −

1)-cluster tilting subcategories have nice homological properties, as we explain

below.

Definition 6.14. A module-finite R-algebra Λ is called n-Calabi-Yau or n-CY

if there is a functorial isomorphism

HomDb(Λ)(X, Y [n]) ∼= D(HomDb(Λ)(Y,X))

for X, Y ∈ Db(flΛ) . Λ is called n-CY− if there is such an isomorphism for any

X ∈ Db(fl(Λ)) and Y ∈ Hob(proj(Λ)).

Theorem 6.15 ([Iya07a, 4.7], [IR08, Theorem 3.2]). If M is a (d − 1)-cluster

tilting object of CM(R) then EndR(M) is a nonsingular R-order. If in addition

EndR(M) is a symmetric R-algebra, it is d-CY.

The following theorem follows from Proposition 2.4(3) and Theorem 3.2(2) in

[IR08].

Theorem 6.16. Let R be a d-dimensional Gorenstein ring and M ∈ CM(R).

Then EndR(M) is d-CY−.

(d− 1)-cluster tilting objects are closely related to Van den Bergh’s noncom-

mutative crepant resolutions, which we now define.

Definition 6.17. We sayM gives a noncommutative crepant resolution (NCCR)

EndR(M) of R if

1. the natural map M → HomT (HomT (M,T ), T ) is an isomorphism;

2. EndR(M) is a nonsingular R-order; and
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3. Mp is a generator of Rp (i.e., Rp ∈ addmod(Rp)(Mp)) for each height one

prime ideal p of T .

Condition 3 is automatically satisfied if R is a commutative normal domain,

but it seems to be necessary when R is not commutative (see [IR08, §8]).

Noncommutative crepant resolutions are closely related to (d−1)-cluster tilt-

ing objects. The next theorem states the relationship precisely.

Theorem 6.18 ([Iya07b]). The following are equivalent.

1. M is a (d− 1)-cluster tilting object in CM(R).

2. M is a generator-cogenerator in CM(R) and M gives an NCCR of R.

Noncommutative crepant resolutions have been studied extensively in recent

years, partly because of the role they role of resolutions of singularities in a

noncommutative version of the minimal model program from algebraic geometry.

See [Leu12, § K] for a good explanation of this role. Here we only note that

the bounded derived categories of NCCRs are of great interest (see e.g. [IR08,

Corollary 8.8]), and that we will prove results about the K-theory of a NCCR

(see (7.4)), which should be closely related to its derived category.

7 K-Theory of CM Modules

7.1 The Long Exact Sequence

Fix a Henselian Cohen-Macaulay local ring R with maximal ideal m. Assume

also that R has a canonical module, and that R is an isolated singularity. As

R is Henselian local, mod(R) is a Krull-Schmidt category by the Krull-Schmidt

theorem (2.12).
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Let C ⊂ CM(R) be an n-cluster tilting subcategory. Let r : mod(C) → mod(R)

be the evaluation functor F 7→ F (R). Let mod0(C) = ker(r) ⊂ mod(C), i.e.

mod0(C) is the category of finitely presented functors F : Cop → (abelian groups)

satisfying F (R) ∼= 0. proj(R) ⊂ C is a contravariantly finite subcategory, and r

is the composition of the restriction functor mod(C) → mod(proj(R)) with the

equivalence mod(proj(R)) → mod(R), F 7→ F (R). Therefore by Corollary 4.18,

the following sequence of exact categories induces a homotopy fiber sequence of

K-theory spectra.

mod0(C) // mod(C) r // mod(R)

In this section we study the first two terms of the sequence.

Definition 7.1. Let mods0(C) be the full subcategory of mod0(C) consisting of

objects which are semisimple in Mod(C).

By Proposition 2.16 and Remark 3.21, mods0(C) consists of those functors

which are finite direct sums of the functors SM .

Proposition 7.2. If C has an additive generator, the inclusion mods0(C) −→

mod0(C) is a K-theory equivalence.

Proof. Since subobjects, quotients, and products of semisimple objects in an

abelian category are again semisimple, mods0(C) is closed under taking subobjects,

quotients, and products. Theorem 6.12 allows us to apply Dévissage to the

subcategory mods0(C) ⊂ mod0(C). The conclusion follows.

Assume C has an additive generator L. Let ind(C) denote the set of isomor-

phism classes of indecomposable objects in C, and put ind0(C) = ind(C) \ {[R]}.

mods0(C) is semisimple, and by Proposition 2.16, its simple objects are the
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functors SM for [M ] ∈ ind0(C). Since Endmods0(C)
(SM) is the quotient of

Endmod(C)(C(−,M)) = EndR(M) by its Jacobson radical, Endmods0(C)
(SM) = κopM .

Therefore the equivalences

proj(κM) = proj(End(SM)op) ≃ add(SM)

induce an equivalence

⊕

[M ]∈ind0(C)

proj(κM)
∼
−→ mods0(C).

Put Λ = (EndRL)
op. Λ is sometimes called the Auslander algebra. Since L is

an additive generator for CM(R)⊕, the horizontal functors in the diagram below

are equivalences:

C⊕ C⊕(L,−)

≃
//

h
��

proj(Λ)
� _

��

mod(C)
F 7→F (L)

≃
// mod(Λ)

Combining everything, we end up with a diagram

⊕

ind0(C)

proj(κM)

≃

��

proj(Λ)

≃

zz✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

≃K

��

mods0(C)

≃K

��

C⊕

≃K

��

mod(Λ)

≃

yyss
ss
ss
ss
ss

mod0(C) // mod(C) // mod(R)

(7.3)

in which arrows labeled ≃K induce equivalences in K-theory and the bottom

horizontal row induces a homotopy fiber sequence in K-theory. Therefore there

are homotopy fiber sequences

∨
[M ]∈ind0(C)

K(κM) // K ′(Λ) // K ′(R) (7.4)
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∨
[M ]∈ind0(C)

K(κM) α // K(C⊕)
β

// K ′(R) (7.5)

Taking homotopy groups in (7.4) yields the long exact sequence of Theorem 1.3.

In particular, 7.5 shows that K ′
0(R) is a finitely generated abelian group when

R is a Henselian CM local ring which has a maximal Cohen-Macaulay module

giving an NCCR. This gives a special case of the following theorem of Dao-Iyama-

Takahashi-Vial, which was proved using seemingly different techniques.

Theorem 7.6 ([DIT12, Theorem 2.3]). Let S be a semilocal ring, and suppose

S has an NCCR. Then K ′
0(S) is a finitely generated abelian group.

Remark 7.7. By Nakayama’s Lemma, the image of m in RM is contained in the

maximal ideal of RM . So we may view κM as a division algebra over R/m. As

RM is a finitely generated R-module, κM is a finite dimensional vector space over

R/m. In particular, if R/m is algebraically closed, κM = R/m.

Remark 7.8. Suppose R is of the form S/(w) for some regular local ring S and

w ∈ S. Then we may apply the techniques above to obtain a decomposition of the

K-theory of the category MF of matrix factorizations in S with potential w. An

object of this category is a Z/2Z-graded finitely generated free S-module X with

a degree-one endomorphism dX such that d2X = w · id. A morphism f : X → Y

in MF is a degree zero map satisfying dY f = fdX .

MF is a Frobenius category whose subcategory prinj(MF) of projective-injective

objects consists of the contractible matrix factorizations – that is, those objectsX

for which there is a degree-one endomorphism t : X → X such that tdX + dXt =

idX . Any Frobenius category F defines an exact category with weak equivalences

wF consisting of those morphisms becoming invertible in the stable category

F/prinj(F). We shall take the K-theory of MF relative to this subcategory wMF

of weak equivalences.
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The category Chb(E) of bounded chain complexes in an exact category E is a

Frobenius category; its conflations are the sequences which are degree-wise split,

and its projective-injective objects are the contractible complexes. Denote by

perf(R) the category of perfect complexes of R-modules, i.e. the exact subcate-

gory of Chbmod(R) consisting of complexes quasi-isomorphic to a complex of free

R-modules. There is a map of Frobenius pairs

Ω : (MF, prinj(MF)) // (Chbmod(R), perf(R))

taking a matrix factorization X1
d1 // X0

d0
oo to coker(d1), considered as a complex

concentrated in degree zero. (Since coker(d1) is annihilated by w, we may view it

as an R-module.) By [Orl04, Theorem 3.9], Ω induces an equivalence on derived

categories, so by Waldhausen approximation 4.13.2 it is an equivalence in K-

theory. Since the degree-zero inclusions mod(R) → Chbmod(R) and proj(R) →

Chbproj(R) are K-theory equivalences ([TT90, 1.11.7]), and since the inclusion

Chbproj(R) → perf(R) is a derived equivalence, it follows thatK(MF) is equivalent

to the homotopy cofiber of the map K(R) −→ K ′(R) induced by the inclusion

proj(R) → mod(R).

Let r : proj(R) → CM(R)⊕ be the inclusion, and set X = cone(K(r)). Con-

sider the following exact triangles of spectra.

K(R)
K(r)

//K(CM(R)⊕)
ρ

// X //
∑
K(R)

K(CM(R)⊕)
β

// K ′(R) //
∑ ∨

ind0(CM(R))

K(κM)
∑

α
//
∑
K(CM(R)⊕)

K(R)
β◦K(r)

// K ′(R) // K(MF) //
∑
K(R)

(7.9)

The middle sequence is the triangle from (7.5), rotated once. Using the octahedral
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axiom to compare the cones of β, K(r), and β ◦K(r), we obtain an exact triangle

∨
ind0(CM(R))

K(κM) α′
// X // K(MF) //

∑ ∨
ind0(CM(R))

K(κM) . (7.10)

We will study α′ in the next section.

7.2 The Auslander-Reiten Matrix

In this section, assume that k = R/m is algebraically closed and that R contains

k. Let C ⊂ CM(R) be an n-cluster tilting object with additive generator L. We

wish to understand the map

α :
∨

ind0(C)

K(k) //K(C⊕) (7.11)

which appears in (7.5).

LetM0, . . . ,M t be the indecomposable objects of C, withM0 = R. For j > 0,

set

0 // Cj
n

// · · · // Cj
0

//M j // 0

to be the n-Auslander-Reiten sequence ending in M j. Given any Q in C, let

#(j, Q) be the number of M j-summands appearing in a decomposition of Q into

indecomposables.

Denote by kj the object of
⊕

ind0(C)

mod(k) which is k in the M j coordinate and

0 in the others. Note that to define a k-linear functor out of
⊕

ind0(C)

mod(k), one

needs only to specify the image of each object kj.

Set a :
⊕

ind0(C)

mod(k) → mod(C) to be the k-linear functor sending kj to SMj ,

and as before let h : C⊕ → mod(C) be the Yoneda functor. Tracing through the

functors in (7.3), one sees that K(a) = K(h) ◦ α. Define k-linear functors

ai :
⊕

ind0(C)

mod(k) → C⊕ (0 ≤ i ≤ n+ 1)
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by





ai(kj) = Cj
i−1 (1 ≤ i ≤ n+ 1)

a0(kj) =M j

The functors ai are defined so that there is an exact sequence of functors

0 // h ◦ an+1
// · · · // h ◦ a0 // a // 0.

Therefore by the additivity theorem ( 4.4),

n+1∑

i=0

(−1)iK(h ◦ ai) = K(a)

so that

α = K(h)−1K(a) =
n+1∑

i=0

(−1)iK(ai). (7.12)

Let ml : mod(k) → C⊕ be the k-linear functor which sends k to M l. Form a

(t + 1) × t integer matrix T whose lj-entry is
n∑
i=0

(−1)i#(l, Cj
i ). (T has a 0th

row but no 0th column.) We call T the Auslander-Reiten matrix. Applying the

additivity theorem to each ai, we conclude from (7.12) that the jth component

of α is

(α)j =
∑

l

TljK(ml). (7.13)

This shows that α can be described concisely as in the following proposition.

Proposition 7.14. Let m =
⊕

ml :
⊕

ind(C)

mod(k) → C⊕, and let T be the Auslan-

der-Reiten matrix. Then

α = K(m) ◦ (T · idK(k)).

Identifying K0(C
⊕) with Z

t+1 via the basis {[M0], . . . , [Mt]}, we see that

K0(ml) : K0(mod(k)) = Z → Z
t+1 is just the inclusion into the lth coordi-

nate. Therefore π0(α), as a map between free abelian groups, is defined by T .

This is the description of π0(α) originally given in [AR86, § 4.3].

T has the following alternative description:
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Proposition 7.15. Let Λ = End(L)op, let P j
0 = (L,M j) ∈ proj(Λ), and let

Sj = P j
0 /rad(P

j
0 ), so P

0
0 , . . . , P

t
0 are the indecomposable projective left Λ-modules

and S0, . . . , St are the simple left Λ-modules. Then

Tlj =
n+1∑

i=0

(−1)idim(ExtiΛ(S
j, Sl)).

To prove this, we first need the following lemma.

Lemma 7.16. Suppose Λ is a semiperfect ring and there are maps in mod(Λ)

P1
f

//

p1
��

P0

p0
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

S

with P1 and P0 projective and S simple. If P0 is a projective cover of coker(f),

then p1 = 0.

Proof. Suppose p1 6= 0. Let n : N → S be a projective cover of S. Then for

i = 0, 1 there is a commutative diagram

N
si //

n
  
❅❅

❅❅
❅❅

❅❅
Pi

pi
��

ri // N

n
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

S

with si a split monomorphism and ri a split epimorphism. Then n = p1s1 =

p0fs1 = nr0fs1 so r0fs1 is an isomorphism. It follows that im(f) contains the

summand im(fs1) of P0, Let p : P0 → coker(f) be the canonical map; then

ps1fr0 = p, contradicting that p is right minimal.

Corollary 7.17. Let Λ be a semiperfect ring and (P•, d•) a minimal projective

resolution of a module M ∈ mod(Λ). Let S ∈ mod(Λ) be a simple module, and

let HomΛ(P•, S) be the complex obtained by applying HomΛ(−, S) to P•. Then

BiHomΛ(P•, S) = 0 and ZiHomΛ(P•, S) = HomΛ(Pi, S). Consequently

ExtiΛ(M,S) = HomΛ(Pi, S).
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Proof. This follows directly from Lemma 7.16.

Proof of Proposition 7.15. We need to show #(l, Cj
i ) = length(ExtiΛ(S

j, Sl)). For

i > 0, put P j
i := (L,Cj

i+1).

0 // (−, Cj
n) // · · · // (−, Cj

0) // (−,M j)

is a minimal projective resolution of the simple functor (−,M j)/rad(−,M j) in

mod(C). The functor F 7→ F (L) : mod(C) → mod(Λ) is an equivalence, so

0 // P j
n+1

// · · · // P j
1

// P j
0

is a minimal projective resolution of Sj in mod(Λ). Therefore by Corollary 7.17,

ExtiΛ(S
j, Sl) = HomΛ(P

j
i , S

l). Decomposing P j
i into indecomposables, one sees

easily that length(HomΛ(P
j
i , S

l)) is the multiplicity of the projective cover P l
0

of Sl as a summand of P j
i . This multiplicity equals the multiplicity of Ml as a

summand of Cj
i , which is exactly #(l, Cj

i ).

Let T ′ be the t × t integer matrix obtained from T by deleting its top

row, which corresponds to the indecomposable M0 = R. We call T ′ the sta-

ble Auslander-Reiten matrix. Just as T described α, T ′ describes the map

α′ = ρ ◦ α :
∨

ind0(C)

K(k) → X from (7.10). Recall from (7.9) the homotopy

fiber sequence

K(R)
K(r)

// K(C⊕)
ρ

// X

Since m0 : mod(k) → C⊕ factors through r, ρ ◦ K(m0) is nulhomotopic and

therefore the jth component of α′ is given by

(α′)j = ρ ◦ αj

= ρ ◦
∑

l≥0

TljK(ml)

= ρ ◦
∑

l>0

T ′
ljK(ml) (7.18)
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This proves the following.

Proposition 7.19. Let m′ =
⊕
l>0

ml :
⊕

ind0(C)

mod(k) → C⊕, and let T ′ be the stable

Auslander-Reiten matrix. Then

α′ = ρ ◦K(m′) ◦ (T ′ · idK(k)).

7.3 An Example

Let R be a 1-dimensional singularity of type A2n, i.e. R = k[[t2, t2n+1]] with

k an algebraically closed field. The MCM R-modules are the modules Mi =

k[[t2, t2(n−i)+1]], i = 0, . . . , n, on which R acts by multiplication. The Auslander-

Reiten quiver of R is then

[R] // [M1]
t2

oo
// · · ·

t2
oo

// [Mn]
t2

oo t
tt

(7.20)

(each right arrow is the inclusion map). In particular, R is of finite Cohen-

Macaulay type, so any additive generator for CM(R) is a 1-cluster tilting object.In

this section we will try to describe, as explicitly as possible, the groups K ′
1(R)

and K1(MF), using the techniques developed elsewhere in this paper. These

descriptions appear in Proposition 7.26.

Let Bi = add(M0, . . . ,Mi) ⊂ C⊕, and let B−1 = {0} ⊂ C⊕. Let fi : Bi−1 → Bi

denote the inclusion functor and pi : Bi → Bi/Bi−1 the quotient functor; let Fi

denote the image in K1(C
⊕) of K1(Bi). Then the solid diagram below commutes

and has exact rows; the top row is exact by Theorem 5.12.

K1(Bi−1)
K1(fi)

//

����

K1(Bi)
K1(pi)

//

����

K1(Bi/Bi−1) //

��

0

0 // Fi−1
// Fi //

77♣
♣

♣
♣

♣
♣

♣
Fi/Fi−1

// 0

(7.21)

Moreover, in the diagram below, the right vertical arrow is an equivalence when
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i > 0.

Bi //

��

Bi/Bi−1

≃

��

C⊕ // C⊕/add(
⊕

l 6=iMl)

Therefore for i > 0, the map K1(Bi) → K1(Bi/Bi−1) factors through Fi as indi-

cated in (7.21). It follows that the right vertical map in (7.21) is an isomorphism.

So there are short exact sequences

0 // Fi−1
// Fi // K1(Bi/Bi−1) // 0 (7.22)

For each i, Bi/Bi−1 has one nonzero indecomposable Mi. The ring homomor-

phism k[[t2, t2(n−i)+1]] → EndR(Mi), sending f to the multiplication-by-f endo-

morphism, is an isomorphism for each i. Using this and the AR quiver (7.20),

we see that for i > 0,

EndBi/Bi−1
Mi = (EndRMi)/(t

2) =





k if 0 < i < n

k[t]/(t2) if i = n

so that Bi/Bi−1 ≃ mod(k) if 0 < i < n, and Bn/Bn−1 ≃ proj(k[t]/(t2)). Let k+ be

the additive abelian group of k. Then (k[t]/(t2))× ∼= k×⊕k+ via the identification

α(1 + βt) 7→ (α, β). Therefore

K1(Bi/Bi−1) = K1(EndBi/Bi−1
Mi) =





k× if 0 < i < n

k× ⊕ k+ if i = n

So, according to the sequences (7.22) and the descriptions above of the groups

K1(Bi/Bi−1), there is a filtration

0 ⊂ F0 ⊂ · · · ⊂ Fn = K1(C
⊕)

such that
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1. F0 is a quotient of K1(R) = R×.

2. Fi/Fi−1
∼= k× for i = 1, . . . , n− 1.

3. Fn/Fn−1
∼= k× ⊕ k+.

The group k× appears in this filtration as a subquotient of K1(C
⊕) n + 1 times:

it appears as a subobject of F0 (we shall soon see that the composition k× →

R× → F0 is monic); it appears n− 1 times as Fi/Fi−1, 0 < i < n; and it appears

as a summand of Fn/Fn−1. We next argue that each of these copies of k× is in

fact a summand of K1(C
⊕).

Let

mi : mod(k) → C⊕ and ji : mod(k) → Bi

be the k-linear functors which (both) send k to Mi, and let

m =
⊕

mi : (mod(k))⊕n+1 → C⊕ and m′ =
⊕
i>0

mi : (mod(k))⊕n → C⊕.

Let q : C⊕ → C⊕/radC⊕ be the quotient functor and

proji : C
⊕/radC⊕ ≃ (mod(k))⊕n+1 → mod(k)

the ith projection. Then the diagram below commutes.

mod(k) = //

ji
��

mi

��

mod(k)

Bi
pi //

� _

��

Bi/Bi−1

��

C⊕ q
// C⊕/radC⊕

proji

]]

From this we deduce the following.

1. The map k× → F0 induced by j0 has a left inverse which factors through

K1(C
⊕). Therefore k× is embedded in F0 in such a way that is a summand

of K1(C
⊕).
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2. For 0 < i < n, K1(ji) embeds k× as a summand of K1(C
⊕) which is con-

tained in Fi and projects isomorphically onto Fi/Fi−1.

3. K1(jn) embeds k× as a summand of K1(C
⊕), and K1(pnjn) : k

× → k×⊕ k+

is the inclusion into the first coordinate.

We compile all of this data in the following commuting diagram, in which all

rows are split short exact sequences and all columns are exact.

0 // k× //

��

K1(m0)

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

R× //

K1(r)
��

R×/k× //

��

0

0 // (k×)n+1 K1(m)
//

��

K1(C
⊕) //

π1(ρ)

��

cokerK1(m) //

��

0

(k×)n

��

K1(X)

��

k+

��

0 0 0

(7.23)

Note that π1(ρ) is surjective because there is an exact sequence

K1(C
⊕)

π1(ρ)
// K1(X) // K0(R) // K0(C

⊕)

Z
� � // Z

n+1

Therefore the terms in the third row of (7.23) fit into an exact sequence

(k×)n
π1(ρ)◦K1(m′)

// K1(X) // k+ // 0.

We next argue that the first map in this sequence is injective. For this it suffices

to show that imK1(m) ∩ imK1(r) ⊂ imK1(m0). For i 6= 0, the composition

proj(R) r // C⊕ proji◦q// mod(k) is zero, so imK1(r) ⊂ kerK1(proji ◦ q) and there-
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fore

imK1(m) ∩ imK1(r) ⊂ imK1(m) ∩ (
⋂

i>0

kerK1(proji ◦ q))

= K1(m)(
⋂

i>0

kerK1(proji ◦ q ◦m))

= imK1(m0),

as desired.

Now using (7.5) and Proposition 7.14 one obtains an exact sequence

(k×)n
K1(m)◦(T ·id

k×
)
// K1(C

⊕) // K ′
1(R) // (K0(k))

n // K0(C
⊕)

Z
n T // Z

n+1

(7.24)

Similarly, by (7.10) and Proposition 7.19 there is an exact sequence

(k×)n
π1(ρ)◦K1(m′)◦(T ′·id

k×
)
// K1(X) // K1(MF) // (K0(k))

n // K0(X)

Z
n T ′

// Z
n

(7.25)

The matrices T and T ′ can be computed directly from the Auslander-Reiten

quiver (7.20); keeping in mind our convention that T has a zeroth row but no

zeroth column, these matrices are

T =




−1 0 0

2 −1 0

−1 2 −1 · · ·

0 −1 2 0

0 0 −1 −1 0

0 0 0
. . . 2 −1

... −1 1




; explicitly, Tlj =





−1 if j = l ± 1

2 if j = l < n

1 if j = l = n

0 otherwise
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T ′ =




2 −1 0

−1 2 −1 · · ·

0 −1 2 0

0 0 −1 −1 0

0 0 0
. . . 2 −1

... −1 1




.

One proves easily by induction that detT ′ > 0, so the last map in each sequence

(7.24) and (7.25) is injective. Since these sequences are exact, it follows that

K ′
1(R)

∼= coker[K1(m) ◦ (T · idk×)]

K1(MF) ∼= coker[π1(ρ) ◦K1(m
′) ◦ (T ′ · idk×)]

Together with the data from (7.23), we obtain the following decompositions.

Proposition 7.26.

1. There is an abelian group G (= cokerK1(m)) such that

K1(C
⊕) ∼= coker(T · idk×)⊕G

and G fits into an exact sequence

R×/k× // G // k+ // 0.

2. There is a short exact sequence

0 // coker(T ′ · idk×) // K1(MF) // k+ // 0.

7.4 Dimension Two

The following theorem is due to Henrik Holm and Lars Winther Christensen.
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Proposition 7.27 ([Hol12, Lemma 2.4]). Suppose R is an ADE singularity (see

Definition 3.25) and dim(R) is even. Then the stable Auslander-Reiten matrix

T ′ is injective.

Proof. When R is an ADE singularity of even dimension, the Auslander-Reiten

quiver of R is the double of a simply laced Dynkin graph G, and for any nonfree

indecomposable M , τM = M (see [Aus87][Theorem 1]). This means that the

Auslander-Reiten sequence ending in a nonfree indecomposable Mi is of the form

0 //Mi
//
⊕

Mj
//
⊕

Mi
// 0

where the direct sum is over all j such that nodes j and i are adjacent in G.

Therefore the Auslander-Reiten matrix T has the form

Tij =





−1 if j 6= i and j and i are adjacent

2 if j = i

0 otherwise

This is exactly the Cartan matrix associated to the Dynkin graph G. It is known

to be nonsingular.

7.5 Dimension Three

The following argument is due to Michael Wemyss. Let R be a Gorenstein com-

plete local ring of dimension 3 over an algebraically closed field, and let L ∈

CM(R) be a 2-cluster tilting object. Adopt the notation of 7.2: Λ := EndR(L)
op;

M0, . . . ,M t are the indecomposable summands of L; and S0, . . . , St are the cor-

responding simple Λ-modules. By Theorem 6.15, Λ is 3-Calabi-Yau, so there are

natural isomorphisms

ExtiΛ(S
j, Sl) ∼= Ext3−iΛ (Sl, Sj),
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This allows us to simplify the Auslander-Reiten matrix considerably:

Tlj = − dim Ext3Λ(S
j, Sl) + dim Ext2Λ(S

j, Sl)

− dim Ext1Λ(S
j, Sl) + dim Ext0Λ(S

j, Sl)

= − dim HomΛ(S
l, Sj) + dim Ext1Λ(S

l, Sj)

− dim Ext1Λ(S
j, Sl) + dim HomΛ(S

j, Sl)

= dim Ext1Λ(S
l, Sj)− dim Ext1Λ(S

j, Sl)

Now, dim Ext1Λ(S
j, Sl) is the number of arrows from node j to node l in the

quiver of Λ. This quiver is known to be symmetric, so dim Ext1Λ(S
j, Sl) =

dim Ext1Λ(S
l, Sj). This proves the following.

Proposition 7.28. Suppose R is Gorenstein of dimension 3 and CM(R) has a

2-cluster tilting object L. Then the Auslander-Reiten matrix T is zero. In partic-

ular, K ′
0(R) is the free abelian group generated by the classes of indecomposable

summands of L.

8 Noncommutative Localizations

The goal of this section is to explain what we know about the possibility to extend

the sequence (5.14) to the left when Λ is the endomorphism ring of an n-cluster

tilting object of CM(R). Sections 8.1 and 8.2 are background, and section 8.3

contains the main results.

8.1 Noncommutative Localizations and Homological Ring Epimor-

phisms

Definition 8.1. A ring homomorphism φ : R → S is called a ring epimorphism

if it is an epimorphism in the category of rings.
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Remark 8.2. Of course, a surjective ring homomorphism is always a ring epimor-

phism. But the converse is emphatically false – any localization of a commutative

ring, for example, is a ring epimorphism.

Proposition 8.3. Let φ : R → S be a ring homomorphism. The following are

equivalent:

1. φ is a ring epimorphism.

2. The restriction φ∗ : Mod(S) → Mod(R) is fully faithful.

3. φ⊗R S = S ⊗R φ : S → S ⊗R S is an isomorphism of S-S-bimodules.

Proposition 8.4 ([Sch85, Theorem 4.1]). Let R be a ring and Σ a set of maps

between finitely generated projective left R-modules. There is a ring homomor-

phism lΣ : R → RΣ, called the universal localization at Σ, satisfying the following

two properties.

1. For any σ ∈ Σ, RΣ ⊗R σ is an isomorphism of left R-modules.

2. Any ring homomorphism R → S such that S⊗Rσ is invertible for all σ ∈ Σ

factors uniquely through lΣ.

R //

lΣ   ❆
❆❆

❆❆
❆❆

❆ S

RΣ

>>⑥
⑥

⑥
⑥

For the rest of this section, let Σ be a set of maps between finitely generated

projective R-modules, and let lΣ : R → RΣ be the universal localization at Σ.

Proposition 8.5. lΣ is a ring epimorphism, and

TorR1 (RΣ, RΣ) = 0.
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Proof. Let

0 //M
f

// F
g

// RΣ
// 0

be an exact sequence of left R-modules with F a free R-module. Consider the

exact sequence of left RΣ-modules

0 // TorR1 (RΣ, RΣ) // RΣ ⊗RM //

&& &&▼
▼▼

▼▼
RΣ ⊗R F // RΣ ⊗R RΣ = RΣ

// 0

Z
+
�

88qqqqq

For any left RΣ-module N , Ext1R(RΣ, N) = Ext1RΣ
(RΣ, N) = 0, so the horizontal

maps below are surjective.

HomR(F,N) // // HomR(M,N)

HomRΣ
(RΣ ⊗R F,N)

HomRΣ
(RΣ⊗Rf,N)

// //

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
HomRΣ

(RΣ ⊗RM,N)

HomRΣ
(Z,N)

ξN

66❧❧❧❧❧❧❧❧❧❧❧❧❧

Therefore the map labeled ξN is also surjective. ξN also fits into the following

exact sequence.

0 // HomRΣ
(Z,N)

ξN // HomRΣ
(RΣ ⊗RM,N) EDBC

GF@A
// HomRΣ

(TorR1 (RΣ, RΣ), N) // Ext1RΣ
(Z,N)

Therefore HomRΣ
(TorR1 (RΣ, RΣ), N) is a submodule of Ext1RΣ

(Z,N). But

Ext1RΣ
(Z,N) fits into the exact sequence

Ext2RΣ
(RΣ ⊗R F,N) // Ext1RΣ

(Z,N) // Ext1RΣ
(RΣ, N)

0 0

so Ext1RΣ
(Z,N) = 0 and therefore HomRΣ

(TorR1 (RΣ, RΣ), N) = 0. Since N was

arbitrary, TorR1 (RΣ, RΣ) = 0.
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Definition 8.6. A ring epimorphism φ : R → S is called homological if, for all

i > 0, TorRi (S, S) = 0.

Remark 8.7. Not every universal localization is a homological ring epimorphism,

as an example of Marks-Vitória shows ([MV12, Example 2.14]). Not every ho-

mological ring epimorphism is a universal localization, as an example of Keller

shows ([Kel94]).

Proposition 8.8 ([MV12, Theorem 3.3]). Suppose φ : R → S is a ring epimo-

morphism that makes S into a finitely presented R-module of projective dimension

at most 1. Then φ is a homological epimorphism if and only if it is a universal

localization.

Definition 8.9. An idempotent two-sided ideal I of R is called stratifying if the

following conditions hold.

1. I = ReR for some idempotent e ∈ R.

2. The multiplication map Re⊗eRe eR → I is an isomorphism.

3. ToreRei (Re, eR) = 0 for i > 0.

Proposition 8.10. If ReR is stratifying, then the quotient p : R → R/ReR is a

homological ring epimorphism.

Proof. Suppose ReR is stratifying, so there is a quasi-isomorphism

Re⊗L

eRe eR
≃ // ReR.

Therefore there is a quasi-isomorphism

(Re⊗L

eRe eR)⊗
L

R (Re⊗L

eRe eR)
≃ // ReR⊗L

R ReR.
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Now, since Re is a projective left R-module, eR⊗L

R Re = eR⊗R Re, so

(Re⊗L

eRe eR)⊗
L

R (Re⊗L

eRe eR) ≃ Re⊗L

eRe (eR⊗L

R Re)⊗
L

eRe eR

≃ Re⊗L

eRe (eR⊗R Re)⊗
L

eRe eR

≃ Re⊗L

eRe eRe⊗
L

eRe eR

≃ Re⊗eRe eRe⊗eRe eR

≃ ReR

Therefore ReR ⊗L

R ReR is acyclic in nonzero degrees. From the long exact se-

quence

· · · // TorRi (ReR,ReR) // TorRi (ReR,R) // TorRi (ReR,R/ReR) // · · ·

and the fact that the map ReR⊗R ReR → ReR⊗R R is an isomorphism, we see

that TorRi (ReR,R/ReR) = 0 for i > 0. From the long exact sequence

· · · // TorRi (ReR,R/ReR) // TorRi (R,R/ReR) // TorRi (R/ReR,R/ReR) // · · ·

and the fact that ReR ⊗R R/ReR = 0, we see that TorRi (R/ReR,R/ReR) = 0

for i > 0. This proves p : R → R/ReR is homological.

8.2 Noncommutative Localizations in K-Theory

Definition 8.11. Let R be a ring and Σ a set of maps between finitely generated

projective left R-modules. Let Dperf(R) be the perfect derived category of R, i.e.

the homotopy category of Chb(proj(R)). Each σ : P → Q in Σ defines a complex

· · · // 0 // P σ // Q // 0 // · · ·

with, say, Q in degree 0. Let D(R,Σ) be the thick triangulated subcategory of

Dperf(R) generated by the maps in Σ, and let Chb(R,Σ) be the full subcategory
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of Chb(proj(R)) consisting of complexes isomorphic in Dperf(R) to a complex in

D(R,Σ).

Let T := (Dperf(R)/D(R,Σ)) be the Verdier quotient of Dperf(R) by D(R,Σ).

Since any complex in Σ is contractible as a complex of RΣ-modules, the compo-

sition of horizontal functors below is zero.

D(R,Σ) // Dperf(R)
l∗
Σ //

((P
PPP

PP
Dperf(RΣ)

T c i

66♠
♠

♠

Since, in addition, Dperf(RΣ) is idempotent complete, there is a factorization i, as

indicated, of l∗Σ through the idempotent completion T c of T .

We say the pair (R,Σ) satisfies Waldhausen localization if i is an equivalence.

If this is true, it follows from 4.14 and 4.13.1 that K(Chb(R,Σ)) is the (-1)-

connected cover of the homotopy fiber of K(R) → K(RΣ), so that

K(Chb(R,Σ)) // K(R)
l∗
Σ // K(RΣ)

induces a long exact sequence of homotopy groups, ending in

· · · // K0(Ch
b(R,Σ)) // K0(R) // K0(RΣ) .

Theorem 8.12 ([TT90]). Let R be a commutative ring and Σ ⊂ R a multi-

plicative set, viewed as a set of maps R → R. Then (R,Σ) satisfies Waldhausen

localization.

Theorem 8.13 ([WY92]). Let R be a ring and Σ ⊂ R a multiplicative set satis-

fying the following conditions:

1. the Øre condition: for any σ ∈ Σ, r ∈ R, there are σ′ ∈ Σ and r′ ∈ R such

that σr = r′σ′.

2. for any σ ∈ Σ and r ∈ R such that σr = 0, there is τ ∈ Σ such that τσ = 0.
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Then (R,Σ) satisfies Waldhausen localization.

Theorem 8.14 ([NR04]). Suppose lΣ is a homological ring epimorphism. Then

(R,Σ) satisfies Waldhausen localization.

Remark 8.15. In the next section we shall see how to produce a pair (R,Σ)

which does not satisfy the hypotheses of either 8.13 or 8.14, but nevertheless has

the property that

K1(R,Σ) // K1(R) // K1(RΣ)
0 // K0(R,Σ) // K0(R) // K0(RΣ) // 0

is exact.

8.3 These ring epimorphisms are not homological

In this section, let R be a complete local Gorenstein ring of Krull dimension d,

and suppose R has a (d−1)-cluster tilting object L. Recall from 7.4 the homotopy

fiber sequence
∨

[M ]∈ind0(C)

K(κM) // K ′(Λ) // K ′(R) (8.16)

We have seen in 7.3 that using this sequence, information about K ′(Λ) yields

information about K ′(R). In Section 5 we deduced a way to decompose K1(Λ),

and we demonstrated in 7.3 how this decomposition could be used to describe

K ′
1(R). If one could extend the sequence (5.14), one could describe K ′

i(R) in sim-

ilar fashion. Theorem 8.14 gives hope that it is possible to extend the sequence.

In this section we give evidence that this is impossible, as the hypotheses of the

Neeman-Ranicki theorem are often not satisfied in our setting. The argument is

due to Michael Wemyss.

We first need a bit of background. We adopt our earlier notation: Λ =

EndR(L)
op, e ∈ Λ a nonzero idempotent corresponding to a summand N = im(e)
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of L. We assume N is not an additive generator of C = add(L), and we need the

additional assumption that eΛe is a maximal Cohen-Macaulay R-module. This

last assumption is equivalent to ExtiR(X,X) = 0 for 0 < i < d − 1 ([Iya07b,

2.5.1]). It is not always satisfied, but it often is; see [Leu12, §M].

Lemma 8.17. Λ/ΛeΛ is a finite length R-module.

Proof. It suffices to show that (Λ/ΛeΛ)p = 0 for any nonmaximal prime ideal p of

R. Let L =
⊕

Mi be the decomposition of L into indecomposables, and let p be

a nonmaximal prime of R. Since eachMi is maximal Cohen-Macaulay, (Mi)p is a

maximal Cohen-Macaulay module over the regular local ring Rp, so (Mi)p ∼= Rp.

Then

Λp = (EndR(L))p =
(
EndR

(⊕
Mi

))
p

= EndRp

(⊕
(Mi)p

)
∼= EndRp

(⊕
Rp

)

Since Rp is a local ring, any idempotent of EndRp
(
⊕

Rp) generates the whole

ring, so (ΛeΛ)p = ΛpeΛp = Λp and therefore (Λ/ΛeΛ)p = 0.

We will also need the following facts; proofs are omitted. The first is a gen-

eralization of 3.17 for orders.

Theorem 8.18 ([Iya08]). Let Λ be an R-order which is an isolated singularity.

Then Hom(τY,X) ∼= DExt1Λ(X, Y ).

Proposition 8.19 ([Iya08, Proposition 3.22]). Let Λ be a symmetric R-order

which is an isolated singularity. Then there is an isomorphism τ ∼= Ω2−d of

functors CM(Λ) → CM(Λ).

Proposition 8.20 (M. Wemyss). ΛeΛ is not stratifying.
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Proof. Suppose ΛeΛ is stratifying, so Λe⊗L

eΛe eΛ ≃ Λ. Then

Λ ≃ RHomΛ(Λ,Λ)

≃ RHomΛ(Λe⊗
L

eΛe eΛ,Λ) as Λ is stratifying

≃ RHomeΛe(eΛ,RHomΛ(Λe,Λ))

≃ RHomeΛe(eΛ, eΛ) as Λe ∈ proj(Λ)

In particular ExtieΛe(eΛ, eΛ) = 0 for i > 0.

On the other hand, eΛe is the endomorphism ring of the summand im(e) of

L, so by 6.16 is d-CY−. By Auslander-Reiten duality 8.18 and Proposition 8.19,

HomeΛe(eΛ, eΛ) = DExt1eΛe(eΛ, τeΛ)

= DExtd−1
eΛe (eΛ, eΛ)

= 0

Therefore eΛ is a projective eΛe module, so M ∈ add(N) and N is an additive

generator of C, contradicting our hypothesis on N .
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